--- ray/src/cv/bsdf2rad.c 2013/10/31 18:19:18 2.3 +++ ray/src/cv/bsdf2rad.c 2021/03/27 17:50:18 2.38 @@ -1,108 +1,816 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdf2rad.c,v 2.3 2013/10/31 18:19:18 greg Exp $"; +static const char RCSid[] = "$Id: bsdf2rad.c,v 2.38 2021/03/27 17:50:18 greg Exp $"; #endif /* - * Plot 3-D BSDF output based on scattering interpolant representation + * Plot 3-D BSDF output based on scattering interpolant or XML representation */ -#define _USE_MATH_DEFINES -#include #include -#include +#include "rtio.h" +#include "paths.h" +#include "rtmath.h" #include "bsdfrep.h" -const float colarr[6][3] = { - .7, 1., .7, - 1., .7, .7, - .7, .7, 1., - 1., .5, 1., - 1., 1., .5, - .5, 1., 1. - }; +#ifndef NINCIDENT +#define NINCIDENT 37 /* number of samples/hemisphere */ +#endif +#ifndef GRIDSTEP +#define GRIDSTEP 2 /* our grid step size */ +#endif +#define SAMPRES (GRIDRES/GRIDSTEP) +int front_comp = 0; /* front component flags (SDsamp*) */ +int back_comp = 0; /* back component flags */ +double overall_min = 1./PI; /* overall minimum BSDF value */ +double min_log10; /* smallest log10 value for plotting */ +double overall_max = .0; /* overall maximum BSDF value */ + +char ourTempDir[TEMPLEN+1] = ""; /* our temporary directory */ + +const char frpref[] = "rf"; +const char ftpref[] = "tf"; +const char brpref[] = "rb"; +const char btpref[] = "tb"; +const char dsuffix[] = ".txt"; + +const char sph_fmat[] = "fBSDFmat"; +const char sph_bmat[] = "bBSDFmat"; +const double sph_rad = 10.; +const double sph_xoffset = 15.; + +#define bsdf_rad (sph_rad*.25) +#define arrow_rad (bsdf_rad*.015) + +#define set_minlog() overall_min = (overall_min < 1e-5) ? 1e-5 : overall_min; \ + min_log10 = log10(overall_min) - .1 + char *progname; -/* Produce a Radiance model plotting the indicated incident direction(s) */ -int -main(int argc, char *argv[]) +/* Get Fibonacci sphere vector (0 to NINCIDENT-1) */ +static RREAL * +get_ivector(FVECT iv, int i) { - int showPeaks = 0; + const double phistep = PI*(3. - 2.236067978); + double r; + + iv[2] = 1. - (i+.5)*(1./NINCIDENT); + r = sqrt(1. - iv[2]*iv[2]); + iv[0] = r * cos((i+1.)*phistep); + iv[1] = r * sin((i+1.)*phistep); + + return(iv); +} + +/* Convert incident vector into sphere position */ +static RREAL * +cvt_sposition(FVECT sp, const FVECT iv, int inc_side) +{ + sp[0] = -iv[0]*sph_rad + inc_side*sph_xoffset; + sp[1] = -iv[1]*sph_rad; + sp[2] = iv[2]*sph_rad; + + return(sp); +} + +/* Get temporary file name */ +static char * +tfile_name(const char *prefix, const char *suffix, int i) +{ + static char buf[256]; + + if (!ourTempDir[0]) { /* create temporary directory */ + mktemp(strcpy(ourTempDir,TEMPLATE)); + if (mkdir(ourTempDir, 0777) < 0) { + perror("mkdir"); + exit(1); + } + } + if (!prefix) prefix = "T"; + if (!suffix) suffix = ""; + sprintf(buf, "%s/%s%03d%s", ourTempDir, prefix, i, suffix); + return(buf); +} + +/* Remove temporary directory & contents */ +static void +cleanup_tmp(void) +{ char buf[128]; + + if (!ourTempDir[0]) + return; +#if defined(_WIN32) || defined(_WIN64) + sprintf(buf, "RMDIR %s /S /Q", ourTempDir); +#else + sprintf(buf, "rm -rf %s", ourTempDir); +#endif + system(buf); +} + +/* Run the specified command, returning 1 if OK */ +static int +run_cmd(const char *cmd) +{ + fflush(stdout); + if (system(cmd)) { + fprintf(stderr, "%s: error running: %s\n", progname, cmd); + return(0); + } + return(1); +} + +/* Plot surface points for the given BSDF incident angle */ +static int +plotBSDF(const char *fname, const FVECT ivec, int dfl, const SDData *sd) +{ + FILE *fp = fopen(fname, "w"); + int i, j; + + if (fp == NULL) { + fprintf(stderr, "%s: cannot open '%s' for writing\n", + progname, fname); + return(0); + } + if (ivec[2] > 0) { + input_orient = 1; + output_orient = dfl&SDsampR ? 1 : -1; + } else { + input_orient = -1; + output_orient = dfl&SDsampR ? -1 : 1; + } + for (i = SAMPRES; i--; ) + for (j = 0; j < SAMPRES; j++) { + FVECT ovec; + SDValue sval; + double bsdf; + ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP); + if (SDreportError(SDevalBSDF(&sval, ovec, + ivec, sd), stderr)) + return(0); + if (sval.cieY > overall_max) + overall_max = sval.cieY; + bsdf = (sval.cieY < overall_min) ? overall_min : sval.cieY; + bsdf = log10(bsdf) - min_log10; + fprintf(fp, "%.5f %.5f %.5f\n", + ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf); + } + if (fclose(fp) == EOF) { + fprintf(stderr, "%s: error writing data to '%s'\n", + progname, fname); + return(0); + } + return(1); +} + +/* Build BSDF values from loaded XML file */ +static int +build_wBSDF(const SDData *sd) +{ + FVECT ivec; + int i; + + if (front_comp & SDsampR) + for (i = 0; i < NINCIDENT; i++) { + get_ivector(ivec, i); + if (!plotBSDF(tfile_name(frpref, dsuffix, i), + ivec, SDsampR, sd)) + return(0); + } + if (front_comp & SDsampT) + for (i = 0; i < NINCIDENT; i++) { + get_ivector(ivec, i); + if (!plotBSDF(tfile_name(ftpref, dsuffix, i), + ivec, SDsampT, sd)) + return(0); + } + if (back_comp & SDsampR) + for (i = 0; i < NINCIDENT; i++) { + get_ivector(ivec, i); + ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; + if (!plotBSDF(tfile_name(brpref, dsuffix, i), + ivec, SDsampR, sd)) + return(0); + } + if (back_comp & SDsampT) + for (i = 0; i < NINCIDENT; i++) { + get_ivector(ivec, i); + ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; + if (!plotBSDF(tfile_name(btpref, dsuffix, i), + ivec, SDsampT, sd)) + return(0); + } + return(1); +} + +/* Plot surface points using radial basis function */ +static int +plotRBF(const char *fname, const RBFNODE *rbf) +{ + FILE *fp = fopen(fname, "w"); + int i, j; + + if (fp == NULL) { + fprintf(stderr, "%s: cannot open '%s' for writing\n", + progname, fname); + return(0); + } + for (i = SAMPRES; i--; ) + for (j = 0; j < SAMPRES; j++) { + FVECT ovec; + double bsdf; + ovec_from_pos(ovec, i*GRIDSTEP, j*GRIDSTEP); + bsdf = eval_rbfrep(rbf, ovec); + if (bsdf > overall_max) + overall_max = bsdf; + else if (bsdf < overall_min) + bsdf = overall_min; + bsdf = log10(bsdf) - min_log10; + fprintf(fp, "%.5f %.5f %.5f\n", + ovec[0]*bsdf, ovec[1]*bsdf, ovec[2]*bsdf); + } + if (fclose(fp) == EOF) { + fprintf(stderr, "%s: error writing data to '%s'\n", + progname, fname); + return(0); + } + return(1); +} + +/* Build BSDF values from scattering interpolant representation */ +static int +build_wRBF(void) +{ + const char *pref; + int i; + + if (input_orient > 0) { + if (output_orient > 0) + pref = frpref; + else + pref = ftpref; + } else if (output_orient < 0) + pref = brpref; + else + pref = btpref; + + for (i = 0; i < NINCIDENT; i++) { + FVECT ivec; + RBFNODE *rbf; + get_ivector(ivec, i); + if (input_orient < 0) { + ivec[0] = -ivec[0]; ivec[2] = -ivec[2]; + } + rbf = advect_rbf(ivec, 15000); + if (!plotRBF(tfile_name(pref, dsuffix, i), rbf)) + return(0); + if (rbf) free(rbf); + } + return(1); /* next call frees */ +} + +/* Put out mirror arrow for the given incident vector */ +static void +put_mirror_arrow(const FVECT origin, const FVECT nrm) +{ + const double arrow_len = 1.2*bsdf_rad; + const double tip_len = 0.2*bsdf_rad; + static int cnt = 1; + FVECT refl; + int i; + + refl[0] = 2.*nrm[2]*nrm[0]; + refl[1] = 2.*nrm[2]*nrm[1]; + refl[2] = 2.*nrm[2]*nrm[2] - 1.; + + printf("\n# Mirror arrow #%d\n", cnt); + printf("\nshaft_mat cylinder inc_dir%d\n0\n0\n7", cnt); + printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", + origin[0], origin[1], origin[2]+arrow_len, + origin[0], origin[1], origin[2], + arrow_rad); + printf("\nshaft_mat cylinder mir_dir%d\n0\n0\n7", cnt); + printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", + origin[0], origin[1], origin[2], + origin[0] + arrow_len*refl[0], + origin[1] + arrow_len*refl[1], + origin[2] + arrow_len*refl[2], + arrow_rad); + printf("\ntip_mat cone mir_tip%d\n0\n0\n8", cnt); + printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", + origin[0] + (arrow_len-.5*tip_len)*refl[0], + origin[1] + (arrow_len-.5*tip_len)*refl[1], + origin[2] + (arrow_len-.5*tip_len)*refl[2], + origin[0] + (arrow_len+.5*tip_len)*refl[0], + origin[1] + (arrow_len+.5*tip_len)*refl[1], + origin[2] + (arrow_len+.5*tip_len)*refl[2], + 2.*arrow_rad); + ++cnt; +} + +/* Put out transmitted direction arrow for the given incident vector */ +static void +put_trans_arrow(const FVECT origin) +{ + const double arrow_len = 1.2*bsdf_rad; + const double tip_len = 0.2*bsdf_rad; + static int cnt = 1; + int i; + + printf("\n# Transmission arrow #%d\n", cnt); + printf("\nshaft_mat cylinder trans_dir%d\n0\n0\n7", cnt); + printf("\n\t%f %f %f\n\t%f %f %f\n\t%f\n", + origin[0], origin[1], origin[2], + origin[0], origin[1], origin[2]-arrow_len, + arrow_rad); + printf("\ntip_mat cone trans_tip%d\n0\n0\n8", cnt); + printf("\n\t%f %f %f\n\t%f %f %f\n\t%f 0\n", + origin[0], origin[1], origin[2]-arrow_len+.5*tip_len, + origin[0], origin[1], origin[2]-arrow_len-.5*tip_len, + 2.*arrow_rad); + ++cnt; +} + +/* Compute rotation (x,y,z) => (xp,yp,zp) */ +static int +addrot(char *xf, const FVECT xp, const FVECT yp, const FVECT zp) +{ + int n = 0; + double theta; + + if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) { + /* Special case for X' along Z-axis */ + theta = -atan2(yp[0], yp[1]); + sprintf(xf, " -ry %f -rz %f", + xp[2] < 0.0 ? 90.0 : -90.0, + theta*(180./PI)); + return(4); + } + theta = atan2(yp[2], zp[2]); + if (!FABSEQ(theta,0.0)) { + sprintf(xf, " -rx %f", theta*(180./PI)); + while (*xf) ++xf; + n += 2; + } + theta = Asin(-xp[2]); + if (!FABSEQ(theta,0.0)) { + sprintf(xf, " -ry %f", theta*(180./PI)); + while (*xf) ++xf; + n += 2; + } + theta = atan2(xp[1], xp[0]); + if (!FABSEQ(theta,0.0)) { + sprintf(xf, " -rz %f", theta*(180./PI)); + /* while (*xf) ++xf; */ + n += 2; + } + return(n); +} + +/* Put out BSDF surfaces */ +static int +put_BSDFs(void) +{ + const double scalef = bsdf_rad/(log10(overall_max) - min_log10); + FVECT ivec, sorg, nrm, upv; + RREAL vMtx[3][3]; + char *fname; + char cmdbuf[256]; + char rotargs[64]; + int nrota; + int i; + + printf("\n# Gensurf output corresponding to %d incident directions\n", + NINCIDENT); + + printf("\nvoid glow tip_mat\n0\n0\n4 1 0 1 0\n"); + printf("\nvoid mixfunc shaft_mat\n4 tip_mat void 0.25 .\n0\n0\n"); + + for (i = 0; i < NINCIDENT; i++) { + get_ivector(ivec, i); + nrm[0] = -ivec[0]; nrm[1] = -ivec[1]; nrm[2] = ivec[2]; + upv[0] = nrm[0]*nrm[1]*(nrm[2] - 1.); + upv[1] = nrm[0]*nrm[0] + nrm[1]*nrm[1]*nrm[2]; + upv[2] = -nrm[1]*(nrm[0]*nrm[0] + nrm[1]*nrm[1]); + if (SDcompXform(vMtx, nrm, upv) != SDEnone) + continue; + nrota = addrot(rotargs, vMtx[0], vMtx[1], vMtx[2]); + if (front_comp) { + cvt_sposition(sorg, ivec, 1); + printf("\nvoid colorfunc scale_pat\n"); + printf("10 bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n"); + printf("\t-s %f -t %f %f %f\n0\n0\n", + bsdf_rad, sorg[0], sorg[1], sorg[2]); + printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n"); + } + if (front_comp & SDsampR) { + put_mirror_arrow(sorg, nrm); + fname = tfile_name(frpref, dsuffix, i); + sprintf(cmdbuf, + "gensurf scale_mat %s%d %s %s %s %d %d | xform %s -s %f -t %f %f %f", + frpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, + rotargs, scalef, sorg[0], sorg[1], sorg[2]); + if (!run_cmd(cmdbuf)) + return(0); + } + if (front_comp & SDsampT) { + put_trans_arrow(sorg); + fname = tfile_name(ftpref, dsuffix, i); + sprintf(cmdbuf, + "gensurf scale_mat %s%d %s %s %s %d %d | xform -I %s -s %f -t %f %f %f", + ftpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, + rotargs, scalef, sorg[0], sorg[1], sorg[2]); + if (!run_cmd(cmdbuf)) + return(0); + } + if (back_comp) { + cvt_sposition(sorg, ivec, -1); + printf("\nvoid colorfunc scale_pat\n"); + printf("10 bsdf_red bsdf_grn bsdf_blu bsdf2rad.cal\n"); + printf("\t-s %f -t %f %f %f\n0\n0\n", + bsdf_rad, sorg[0], sorg[1], sorg[2]); + printf("\nscale_pat glow scale_mat\n0\n0\n4 1 1 1 0\n"); + } + if (back_comp & SDsampR) { + put_mirror_arrow(sorg, nrm); + fname = tfile_name(brpref, dsuffix, i); + sprintf(cmdbuf, + "gensurf scale_mat %s%d %s %s %s %d %d | xform -I -ry 180 %s -s %f -t %f %f %f", + brpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, + rotargs, scalef, sorg[0], sorg[1], sorg[2]); + if (!run_cmd(cmdbuf)) + return(0); + } + if (back_comp & SDsampT) { + put_trans_arrow(sorg); + fname = tfile_name(btpref, dsuffix, i); + sprintf(cmdbuf, + "gensurf scale_mat %s%d %s %s %s %d %d | xform -ry 180 %s -s %f -t %f %f %f", + btpref, i, fname, fname, fname, SAMPRES-1, SAMPRES-1, + rotargs, scalef, sorg[0], sorg[1], sorg[2]); + if (!run_cmd(cmdbuf)) + return(0); + } + } + return(1); +} + +/* Put our hemisphere material */ +static void +put_matBSDF(const char *XMLfile) +{ + const char *curdir = "./"; + + if (!XMLfile) { /* simple material */ + printf("\n# Simplified material because we have no XML input\n"); + printf("\nvoid brightfunc latlong\n2 latlong bsdf2rad.cal\n0\n0\n"); + if ((front_comp|back_comp) & SDsampT) + printf("\nlatlong trans %s\n0\n0\n7 .75 .75 .75 0 .04 .5 .8\n", + sph_fmat); + else + printf("\nlatlong plastic %s\n0\n0\n5 .5 .5 .5 0 0\n", + sph_fmat); + printf("\ninherit alias %s %s\n", sph_bmat, sph_fmat); + return; + } + switch (XMLfile[0]) { /* avoid RAYPATH search */ + case '.': + case '~': + CASEDIRSEP: + curdir = ""; + break; + case '\0': + fprintf(stderr, "%s: empty file name in put_matBSDF\n", progname); + exit(1); + break; + } + printf("\n# Actual BSDF materials for rendering the hemispheres\n"); + printf("\nvoid BSDF BSDF_f\n6 0 \"%s%s\" upx upy upz bsdf2rad.cal\n0\n0\n", + curdir, XMLfile); + printf("\nvoid plastic black\n0\n0\n5 0 0 0 0 0\n"); + printf("\nvoid mixfunc %s\n4 BSDF_f black latlong bsdf2rad.cal\n0\n0\n", + sph_fmat); + printf("\nvoid BSDF BSDF_b\n8 0 \"%s%s\" upx upy upz bsdf2rad.cal -ry 180\n0\n0\n", + curdir, XMLfile); + printf("\nvoid mixfunc %s\n4 BSDF_b black latlong bsdf2rad.cal\n0\n0\n", + sph_bmat); +} + +/* Put out overhead parallel light source */ +static void +put_source(void) +{ + printf("\n# Overhead parallel light source\n"); + printf("\nvoid light bright\n0\n0\n3 2500 2500 2500\n"); + printf("\nbright source light\n0\n0\n4 0 0 1 2\n"); + printf("\n# Material used for labels\n"); + printf("\nvoid trans vellum\n0\n0\n7 1 1 1 0 0 .5 0\n"); +} + +/* Put out hemisphere(s) */ +static void +put_hemispheres(void) +{ + const int nsegs = 131; + + printf("\n# Hemisphere(s) for showing BSDF appearance (if XML file)\n"); + if (front_comp) { + printf( +"\n!genrev %s Front \"R*sin(A*t)\" \"R*cos(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n", + sph_fmat, nsegs, sph_rad, 0.5*PI, sph_xoffset); + printf("\nvoid brighttext front_text\n3 helvet.fnt . FRONT\n0\n"); + printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n", + -.22*sph_rad + sph_xoffset, -1.4*sph_rad, + .35/5.*sph_rad, -1.6*.35/5.*sph_rad); + printf("\nfront_text alias front_label_mat vellum\n"); + printf("\nfront_label_mat polygon front_label\n0\n0\n12"); + printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", + -.25*sph_rad + sph_xoffset, -1.3*sph_rad, + -.25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad, + .25*sph_rad + sph_xoffset, (-1.4-1.6*.35/5.-.1)*sph_rad, + .25*sph_rad + sph_xoffset, -1.3*sph_rad ); + } + if (back_comp) { + printf( +"\n!genrev %s Back \"R*cos(A*t)\" \"R*sin(A*t)\" %d -e \"R:%g;A:%f\" -s | xform -t %g 0 0\n", + sph_bmat, nsegs, sph_rad, 0.5*PI, -sph_xoffset); + printf("\nvoid brighttext back_text\n3 helvet.fnt . BACK\n0\n"); + printf("12\n\t%f %f 0\n\t%f 0 0\n\t0 %f 0\n\t.01 1 -.1\n", + -.22*sph_rad - sph_xoffset, -1.4*sph_rad, + .35/4.*sph_rad, -1.6*.35/4.*sph_rad); + printf("\nback_text alias back_label_mat vellum\n"); + printf("\nback_label_mat polygon back_label\n0\n0\n12"); + printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", + -.25*sph_rad - sph_xoffset, -1.3*sph_rad, + -.25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad, + .25*sph_rad - sph_xoffset, (-1.4-1.6*.35/4.-.1)*sph_rad, + .25*sph_rad - sph_xoffset, -1.3*sph_rad ); + } +} + +/* Put out falsecolor scale and name label */ +static void +put_scale(void) +{ + const double max_log10 = log10(overall_max); + const double leg_width = 2.*.75*(fabs(sph_xoffset) - sph_rad); + const double leg_height = 2.*sph_rad; + const int text_lines = 6; + const int text_digits = 8; + char fmt[16]; + int i; + + printf("\n# BSDF legend with falsecolor scale\n"); + printf("\nvoid colorfunc lscale\n10 sca_red(Py) sca_grn(Py) sca_blu(Py)"); + printf("\n\tbsdf2rad.cal -s %f -t 0 %f 0\n0\n0\n", leg_height, -.5*leg_height); + sprintf(fmt, "%%.%df", text_digits-3); + for (i = 0; i < text_lines; i++) { + char vbuf[16]; + sprintf(vbuf, fmt, pow(10., (i+.5)/text_lines*(max_log10-min_log10)+min_log10)); + printf("\nlscale brighttext lscale\n"); + printf("3 helvet.fnt . %s\n0\n12\n", vbuf); + printf("\t%f %f 0\n", -.45*leg_width, ((i+.9)/text_lines-.5)*leg_height); + printf("\t%f 0 0\n", .8*leg_width/strlen(vbuf)); + printf("\t0 %f 0\n", -.9/text_lines*leg_height); + printf("\t.01 1 -.1\n"); + } + printf("\nlscale alias legend_mat vellum\n"); + printf("\nlegend_mat polygon legend\n0\n0\n12"); + printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", + -.5*leg_width, .5*leg_height, + -.5*leg_width, -.5*leg_height, + .5*leg_width, -.5*leg_height, + .5*leg_width, .5*leg_height); + printf("\nvoid brighttext BSDFtitle\n3 helvet.fnt . BSDF\n0\n12\n"); + printf("\t%f %f 0\n", -.25*leg_width, .7*leg_height); + printf("\t%f 0 0\n", .4/4.*leg_width); + printf("\t0 %f 0\n", -.1*leg_height); + printf("\t.01 1 -.1\n"); + printf("\nBSDFtitle alias title_mat vellum\n"); + printf("\ntitle_mat polygon title\n0\n0\n12"); + printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", + -.3*leg_width, .75*leg_height, + -.3*leg_width, .55*leg_height, + .3*leg_width, .55*leg_height, + .3*leg_width, .75*leg_height); + if (!bsdf_name[0]) + return; + printf("\nvoid brighttext BSDFname\n3 helvet.fnt . \"%s\"\n0\n12\n", bsdf_name); + printf("\t%f %f 0\n", -.95*leg_width, -.6*leg_height); + printf("\t%f 0 0\n", 1.8/strlen(bsdf_name)*leg_width); + printf("\t0 %f 0\n", -.1*leg_height); + printf("\t.01 1 -.1\n"); + printf("\nBSDFname alias name_mat vellum\n"); + printf("\nname_mat polygon name\n0\n0\n12"); + printf("\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n\t%f %f 0\n", + -leg_width, -.55*leg_height, + -leg_width, -.75*leg_height, + leg_width, -.75*leg_height, + leg_width, -.55*leg_height); +} + +/* Convert MGF to Radiance in output */ +static void +convert_mgf(const char *mgfdata) +{ + int len = strlen(mgfdata); + char mgfn[128]; + char radfn[128]; + char cmdbuf[256]; + float xmin, xmax, ymin, ymax, zmin, zmax; + double max_dim; + int fd; FILE *fp; - RBFNODE *rbf; - double bsdf, min_log; - FVECT dir; - int i, j, n; + if (!len) return; + strcpy(mgfn, tfile_name("geom", ".mgf", 0)); + fd = open(mgfn, O_WRONLY|O_CREAT, 0666); + if (fd < 0 || write(fd, mgfdata, len) != len) { + fprintf(stderr, "%s: cannot write file '%s'\n", + progname, mgfn); + return; + } + close(fd); + strcpy(radfn, tfile_name("geom", ".rad", 0)); + sprintf(cmdbuf, "mgf2rad %s > %s", mgfn, radfn); + if (!run_cmd(cmdbuf)) + return; + sprintf(cmdbuf, "getbbox -w -h %s", radfn); + if ((fp = popen(cmdbuf, "r")) == NULL || + fscanf(fp, "%f %f %f %f %f %f", + &xmin, &xmax, &ymin, &ymax, &zmin, &zmax) != 6 + || pclose(fp) < 0) { + fprintf(stderr, "%s: error reading from command: %s\n", + progname, cmdbuf); + return; + } + max_dim = ymax - ymin; + if (xmax - xmin > max_dim) + max_dim = xmax - xmin; + if (front_comp) { + printf("\n# BSDF system geometry (front view)\n"); + sprintf(cmdbuf, "xform -t %f %f %f -s %f -t %f %f 0 %s", + -.5*(xmin+xmax), -.5*(ymin+ymax), -zmax, + 1.5*sph_rad/max_dim, + sph_xoffset, -2.5*sph_rad, + radfn); + if (!run_cmd(cmdbuf)) + return; + } + if (back_comp) { + printf("\n# BSDF system geometry (back view)\n"); + sprintf(cmdbuf, "xform -t %f %f %f -s %f -ry 180 -t %f %f 0 %s", + -.5*(xmin+xmax), -.5*(ymin+ymax), -zmin, + 1.5*sph_rad/max_dim, + -sph_xoffset, -2.5*sph_rad, + radfn); + if (!run_cmd(cmdbuf)) + return; + } +} + +/* Check RBF input header line & get minimum BSDF value */ +static int +rbf_headline(char *s, void *p) +{ + char fmt[MAXFMTLEN]; + + if (formatval(fmt, s)) { + if (strcmp(fmt, BSDFREP_FMT)) + return(-1); + return(0); + } + if (!strncmp(s, "IO_SIDES=", 9)) { + sscanf(s+9, "%d %d", &input_orient, &output_orient); + if (input_orient == output_orient) { + if (input_orient > 0) + front_comp |= SDsampR; + else + back_comp |= SDsampR; + } else if (input_orient > 0) + front_comp |= SDsampT; + else + back_comp |= SDsampT; + return(0); + } + if (!strncmp(s, "BSDFMIN=", 8)) { + sscanf(s+8, "%lf", &bsdf_min); + if (bsdf_min < overall_min) + overall_min = bsdf_min; + return(0); + } + return(0); +} + +/* Produce a Radiance model plotting the given BSDF representation */ +int +main(int argc, char *argv[]) +{ + int inpXML = -1; + double myLim[2]; + SDData myBSDF; + int a, n; + /* check arguments */ progname = argv[0]; - if (argc > 1 && !strcmp(argv[1], "-p")) { - ++showPeaks; - ++argv; --argc; + a = 1; + myLim[0] = -1; myLim[1] = -2; /* specified BSDF range? */ + if (argc > a+3 && argv[a][0] == '-' && argv[a][1] == 'r') { + myLim[0] = atof(argv[++a]); + myLim[1] = atof(argv[++a]); + ++a; } - if (argc < 4) { - fprintf(stderr, "Usage: %s [-p] bsdf.sir theta1 phi1 .. > output.rad\n", progname); - return(1); + if (argc > a && (n = strlen(argv[a])-4) > 0) { + if (!strcasecmp(argv[a]+n, ".xml")) + inpXML = 1; + else if (!strcasecmp(argv[a]+n, ".sir")) + inpXML = 0; } - /* load input */ - if ((fp = fopen(argv[1], "rb")) == NULL) { - fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", - progname, argv[1]); + if (inpXML < 0 || inpXML & (argc > a+1)) { + fprintf(stderr, "Usage: %s [-r min max] bsdf.xml > output.rad\n", progname); + fprintf(stderr, " Or: %s [-r min max] hemi1.sir hemi2.sir .. > output.rad\n", progname); return(1); } - if (!load_bsdf_rep(fp)) - return(1); - fclose(fp); - min_log = log(bsdf_min*.5); - /* output BSDF rep. */ - for (n = 0; (n < 6) & (2*n+3 < argc); n++) { - dir[2] = sin((M_PI/180.)*atof(argv[2*n+2])); - dir[0] = dir[2] * cos((M_PI/180.)*atof(argv[2*n+3])); - dir[1] = dir[2] * sin((M_PI/180.)*atof(argv[2*n+3])); - dir[2] = input_orient * sqrt(1. - dir[2]*dir[2]); -#ifdef DEBUG - fprintf(stderr, "Computing DSF for incident direction (%.1f,%.1f)\n", - get_theta180(dir), get_phi360(dir)); -#endif - rbf = advect_rbf(dir, 15000); -#ifdef DEBUG - if (rbf == NULL) - fputs("NULL RBF\n", stderr); + fputs("# ", stdout); /* copy our command */ + printargs(argc, argv, stdout); + /* evaluate BSDF */ + if (inpXML) { + SDclearBSDF(&myBSDF, argv[a]); + if (SDreportError(SDloadFile(&myBSDF, argv[a]), stderr)) + return(1); + if (myBSDF.rf != NULL) front_comp |= SDsampR; + if (myBSDF.tf != NULL) front_comp |= SDsampT; + if (myBSDF.rb != NULL) back_comp |= SDsampR; + if (myBSDF.tb != NULL) back_comp |= SDsampT; + if (!front_comp & !back_comp) { + fprintf(stderr, "%s: nothing to plot in '%s'\n", + progname, argv[a]); + return(1); + } + if (myLim[0] >= 0) + overall_min = myLim[0]; + else { + if (front_comp & SDsampR && myBSDF.rLambFront.cieY < overall_min*PI) + overall_min = myBSDF.rLambFront.cieY/PI; + if (back_comp & SDsampR && myBSDF.rLambBack.cieY < overall_min*PI) + overall_min = myBSDF.rLambBack.cieY/PI; + if (front_comp & SDsampT && myBSDF.tLambFront.cieY < overall_min*PI) + overall_min = myBSDF.tLambFront.cieY/PI; + if (back_comp & SDsampT && myBSDF.tLambBack.cieY < overall_min*PI) + overall_min = myBSDF.tLambBack.cieY/PI; + } + set_minlog(); + if (!build_wBSDF(&myBSDF)) + return(1); + if (myBSDF.matn[0]) + strcpy(bsdf_name, myBSDF.matn); else - fprintf(stderr, "Hemispherical reflectance: %.3f\n", rbf->vtotal); -#endif - printf("void trans tmat\n0\n0\n7 %f %f %f .04 .04 .9 1\n", - colarr[n][0], colarr[n][1], colarr[n][2]); - if (showPeaks && rbf != NULL) { - printf("void plastic pmat\n0\n0\n5 %f %f %f .04 .08\n", - 1.-colarr[n][0], 1.-colarr[n][1], 1.-colarr[n][2]); - for (i = 0; i < rbf->nrbf; i++) { - ovec_from_pos(dir, rbf->rbfa[i].gx, rbf->rbfa[i].gy); - bsdf = eval_rbfrep(rbf, dir) / (output_orient*dir[2]); - bsdf = log(bsdf) - min_log; - printf("pmat sphere p%d\n0\n0\n4 %f %f %f %f\n", - i+1, dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf, - .007*bsdf); + strcpy(bsdf_name, myBSDF.name); + strcpy(bsdf_manuf, myBSDF.makr); + put_matBSDF(argv[a]); + } else { + FILE *fp[4]; + if (argc > a+4) { + fprintf(stderr, "%s: more than 4 hemispheres!\n", progname); + return(1); + } + for (n = a; n < argc; n++) { + fp[n-a] = fopen(argv[n], "rb"); + if (fp[n-a] == NULL) { + fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", + progname, argv[n]); + return(1); } + if (getheader(fp[n-a], rbf_headline, NULL) < 0) { + fprintf(stderr, "%s: bad BSDF interpolant '%s'\n", + progname, argv[n]); + return(1); + } } - fflush(stdout); - sprintf(buf, "gensurf tmat bsdf - - - %d %d", GRIDRES-1, GRIDRES-1); - fp = popen(buf, "w"); - if (fp == NULL) { - fprintf(stderr, "%s: cannot open '| %s'\n", progname, buf); - return(1); + if (myLim[0] >= 0) + overall_min = myLim[0]; + set_minlog(); + for (n = a; n < argc; n++) { + if (fseek(fp[n-a], 0L, SEEK_SET) < 0) { + fprintf(stderr, "%s: cannot seek on '%s'\n", + progname, argv[n]); + return(1); + } + if (!load_bsdf_rep(fp[n-a])) + return(1); + fclose(fp[n-a]); + if (!build_wRBF()) + return(1); } - for (i = 0; i < GRIDRES; i++) - for (j = 0; j < GRIDRES; j++) { - ovec_from_pos(dir, i, j); - bsdf = eval_rbfrep(rbf, dir) / (output_orient*dir[2]); - bsdf = log(bsdf) - min_log; - fprintf(fp, "%.8e %.8e %.8e\n", - dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf); - } - if (rbf != NULL) - free(rbf); - if (pclose(fp)) - return(1); + put_matBSDF(NULL); } + if (myLim[1] > myLim[0]) /* override maximum BSDF? */ + overall_max = myLim[1]; + put_source(); /* before hemispheres & labels */ + put_hemispheres(); + put_scale(); + if (inpXML && myBSDF.mgf) + convert_mgf(myBSDF.mgf); + if (!put_BSDFs()) /* most of the output happens here */ + return(1); + cleanup_tmp(); return(0); }