| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
|
|
static const char RCSid[] = "$Id$";
|
| 3 |
|
|
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Plot 3-D BSDF output based on scattering interpolant representation
|
| 6 |
|
|
*/
|
| 7 |
|
|
|
| 8 |
|
|
#define _USE_MATH_DEFINES
|
| 9 |
|
|
#include <stdio.h>
|
| 10 |
|
|
#include <stdlib.h>
|
| 11 |
|
|
#include <math.h>
|
| 12 |
|
|
#include "bsdfrep.h"
|
| 13 |
|
|
|
| 14 |
|
|
const float colarr[6][3] = {
|
| 15 |
|
|
.7, 1., .7,
|
| 16 |
|
|
1., .7, .7,
|
| 17 |
|
|
.7, .7, 1.,
|
| 18 |
|
|
1., .5, 1.,
|
| 19 |
|
|
1., 1., .5,
|
| 20 |
|
|
.5, 1., 1.
|
| 21 |
|
|
};
|
| 22 |
|
|
|
| 23 |
|
|
char *progname;
|
| 24 |
|
|
|
| 25 |
|
|
/* Produce a Radiance model plotting the indicated incident direction(s) */
|
| 26 |
|
|
int
|
| 27 |
|
|
main(int argc, char *argv[])
|
| 28 |
|
|
{
|
| 29 |
|
|
char buf[128];
|
| 30 |
|
|
FILE *fp;
|
| 31 |
|
|
RBFNODE *rbf;
|
| 32 |
|
|
double bsdf, min_log;
|
| 33 |
|
|
FVECT dir;
|
| 34 |
|
|
int i, j, n;
|
| 35 |
|
|
|
| 36 |
|
|
progname = argv[0];
|
| 37 |
|
|
if (argc < 4) {
|
| 38 |
|
|
fprintf(stderr, "Usage: %s bsdf.sir theta1 phi1 .. > output.rad\n", argv[0]);
|
| 39 |
|
|
return(1);
|
| 40 |
|
|
}
|
| 41 |
|
|
/* load input */
|
| 42 |
|
|
if ((fp = fopen(argv[1], "rb")) == NULL) {
|
| 43 |
|
|
fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n",
|
| 44 |
|
|
argv[0], argv[1]);
|
| 45 |
|
|
return(1);
|
| 46 |
|
|
}
|
| 47 |
|
|
if (!load_bsdf_rep(fp))
|
| 48 |
|
|
return(1);
|
| 49 |
|
|
fclose(fp);
|
| 50 |
|
|
min_log = log(bsdf_min*.5);
|
| 51 |
|
|
/* output surface(s) */
|
| 52 |
|
|
for (n = 0; (n < 6) & (2*n+3 < argc); n++) {
|
| 53 |
|
|
printf("void trans tmat\n0\n0\n7 %f %f %f .04 .04 .9 1\n",
|
| 54 |
|
|
colarr[n][0], colarr[n][1], colarr[n][2]);
|
| 55 |
|
|
fflush(stdout);
|
| 56 |
|
|
sprintf(buf, "gensurf tmat bsdf - - - %d %d", GRIDRES-1, GRIDRES-1);
|
| 57 |
|
|
fp = popen(buf, "w");
|
| 58 |
|
|
if (fp == NULL) {
|
| 59 |
|
|
fprintf(stderr, "%s: cannot open '| %s'\n", argv[0], buf);
|
| 60 |
|
|
return(1);
|
| 61 |
|
|
}
|
| 62 |
|
|
dir[2] = sin((M_PI/180.)*atof(argv[2*n+2]));
|
| 63 |
|
|
dir[0] = dir[2] * cos((M_PI/180.)*atof(argv[2*n+3]));
|
| 64 |
|
|
dir[1] = dir[2] * sin((M_PI/180.)*atof(argv[2*n+3]));
|
| 65 |
|
|
dir[2] = input_orient * sqrt(1. - dir[2]*dir[2]);
|
| 66 |
|
|
fprintf(stderr, "Computing DSF for incident direction (%.1f,%.1f)\n",
|
| 67 |
|
|
get_theta180(dir), get_phi360(dir));
|
| 68 |
|
|
rbf = advect_rbf(dir, 15000);
|
| 69 |
|
|
if (rbf == NULL)
|
| 70 |
|
|
fputs("NULL RBF\n", stderr);
|
| 71 |
|
|
else
|
| 72 |
|
|
fprintf(stderr, "Hemispherical reflectance: %.3f\n", rbf->vtotal);
|
| 73 |
|
|
for (i = 0; i < GRIDRES; i++)
|
| 74 |
|
|
for (j = 0; j < GRIDRES; j++) {
|
| 75 |
|
|
ovec_from_pos(dir, i, j);
|
| 76 |
|
|
bsdf = eval_rbfrep(rbf, dir) / (output_orient*dir[2]);
|
| 77 |
|
|
bsdf = log(bsdf) - min_log;
|
| 78 |
|
|
fprintf(fp, "%.8e %.8e %.8e\n",
|
| 79 |
|
|
dir[0]*bsdf, dir[1]*bsdf, dir[2]*bsdf);
|
| 80 |
|
|
}
|
| 81 |
|
|
if (rbf != NULL)
|
| 82 |
|
|
free(rbf);
|
| 83 |
|
|
if (pclose(fp))
|
| 84 |
|
|
return(1);
|
| 85 |
|
|
}
|
| 86 |
|
|
return(0);
|
| 87 |
|
|
}
|