1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: bsdf2klems.c,v 2.14 2014/03/12 22:24:59 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Load measured BSDF interpolant and write out as XML file with Klems matrix. |
6 |
* |
7 |
* G. Ward |
8 |
*/ |
9 |
|
10 |
#define _USE_MATH_DEFINES |
11 |
#include <stdio.h> |
12 |
#include <stdlib.h> |
13 |
#include <string.h> |
14 |
#include <math.h> |
15 |
#include "random.h" |
16 |
#include "platform.h" |
17 |
#include "calcomp.h" |
18 |
#include "bsdfrep.h" |
19 |
#include "bsdf_m.h" |
20 |
/* assumed maximum # Klems patches */ |
21 |
#define MAXPATCHES 145 |
22 |
/* global argv[0] */ |
23 |
char *progname; |
24 |
/* selected basis function name */ |
25 |
static const char *kbasis = "LBNL/Klems Full"; |
26 |
/* number of BSDF samples per patch */ |
27 |
static int npsamps = 256; |
28 |
/* limit on number of RBF lobes */ |
29 |
static int lobe_lim = 15000; |
30 |
/* progress bar length */ |
31 |
static int do_prog = 79; |
32 |
|
33 |
|
34 |
/* Start new progress bar */ |
35 |
#define prog_start(s) if (do_prog) fprintf(stderr, "%s: %s...\n", progname, s); else |
36 |
|
37 |
/* Draw progress bar of the appropriate length */ |
38 |
static void |
39 |
prog_show(double frac) |
40 |
{ |
41 |
char pbar[256]; |
42 |
int nchars; |
43 |
|
44 |
if (do_prog <= 1) return; |
45 |
if (do_prog > sizeof(pbar)-2) |
46 |
do_prog = sizeof(pbar)-2; |
47 |
if (frac < 0) frac = 0; |
48 |
else if (frac > 1) frac = 1; |
49 |
nchars = do_prog*frac + .5; |
50 |
pbar[0] = '\r'; |
51 |
memset(pbar+1, '*', nchars); |
52 |
memset(pbar+1+nchars, '-', do_prog-nchars); |
53 |
pbar[do_prog+1] = '\0'; |
54 |
fputs(pbar, stderr); |
55 |
} |
56 |
|
57 |
/* Finish progress bar */ |
58 |
static void |
59 |
prog_done(void) |
60 |
{ |
61 |
int n = do_prog; |
62 |
|
63 |
if (n <= 1) return; |
64 |
fputc('\r', stderr); |
65 |
while (n--) |
66 |
fputc(' ', stderr); |
67 |
fputc('\r', stderr); |
68 |
} |
69 |
|
70 |
/* Return angle basis corresponding to the given name */ |
71 |
static ANGLE_BASIS * |
72 |
get_basis(const char *bn) |
73 |
{ |
74 |
int n = nabases; |
75 |
|
76 |
while (n-- > 0) |
77 |
if (!strcasecmp(bn, abase_list[n].name)) |
78 |
return &abase_list[n]; |
79 |
return NULL; |
80 |
} |
81 |
|
82 |
/* Output XML header to stdout */ |
83 |
static void |
84 |
xml_header(int ac, char *av[]) |
85 |
{ |
86 |
puts("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); |
87 |
puts("<WindowElement xmlns=\"http://windows.lbl.gov\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:schemaLocation=\"http://windows.lbl.gov/BSDF-v1.4.xsd\">"); |
88 |
fputs("<!-- File produced by:", stdout); |
89 |
while (ac-- > 0) { |
90 |
fputc(' ', stdout); |
91 |
fputs(*av++, stdout); |
92 |
} |
93 |
puts(" -->"); |
94 |
} |
95 |
|
96 |
/* Output XML prologue to stdout */ |
97 |
static void |
98 |
xml_prologue(const SDData *sd) |
99 |
{ |
100 |
const char *matn = (sd && sd->matn[0]) ? sd->matn : |
101 |
bsdf_name[0] ? bsdf_name : "Unknown"; |
102 |
const char *makr = (sd && sd->makr[0]) ? sd->makr : |
103 |
bsdf_manuf[0] ? bsdf_manuf : "Unknown"; |
104 |
ANGLE_BASIS *abp = get_basis(kbasis); |
105 |
int i; |
106 |
|
107 |
if (abp == NULL) { |
108 |
fprintf(stderr, "%s: unknown angle basis '%s'\n", progname, kbasis); |
109 |
exit(1); |
110 |
} |
111 |
puts("<WindowElementType>System</WindowElementType>"); |
112 |
puts("<FileType>BSDF</FileType>"); |
113 |
puts("<Optical>"); |
114 |
puts("<Layer>"); |
115 |
puts("\t<Material>"); |
116 |
printf("\t\t<Name>%s</Name>\n", matn); |
117 |
printf("\t\t<Manufacturer>%s</Manufacturer>\n", makr); |
118 |
if (sd && sd->dim[2] > .001) { |
119 |
printf("\t\t<Thickness unit=\"meter\">%.3f</Thickness>\n", sd->dim[2]); |
120 |
printf("\t\t<Width unit=\"meter\">%.3f</Width>\n", sd->dim[0]); |
121 |
printf("\t\t<Height unit=\"meter\">%.3f</Height>\n", sd->dim[1]); |
122 |
} |
123 |
puts("\t\t<DeviceType>Other</DeviceType>"); |
124 |
puts("\t</Material>"); |
125 |
if (sd && sd->mgf != NULL) { |
126 |
puts("\t<Geometry format=\"MGF\">"); |
127 |
puts("\t\t<MGFblock unit=\"meter\">"); |
128 |
fputs(sd->mgf, stdout); |
129 |
puts("</MGFblock>"); |
130 |
puts("\t</Geometry>"); |
131 |
} |
132 |
puts("\t<DataDefinition>"); |
133 |
puts("\t\t<IncidentDataStructure>Columns</IncidentDataStructure>"); |
134 |
puts("\t\t<AngleBasis>"); |
135 |
printf("\t\t\t<AngleBasisName>%s</AngleBasisName>\n", kbasis); |
136 |
for (i = 0; abp->lat[i].nphis; i++) { |
137 |
puts("\t\t\t<AngleBasisBlock>"); |
138 |
printf("\t\t\t<Theta>%g</Theta>\n", i ? |
139 |
.5*(abp->lat[i].tmin + abp->lat[i+1].tmin) : |
140 |
.0 ); |
141 |
printf("\t\t\t<nPhis>%d</nPhis>\n", abp->lat[i].nphis); |
142 |
puts("\t\t\t<ThetaBounds>"); |
143 |
printf("\t\t\t\t<LowerTheta>%g</LowerTheta>\n", abp->lat[i].tmin); |
144 |
printf("\t\t\t\t<UpperTheta>%g</UpperTheta>\n", abp->lat[i+1].tmin); |
145 |
puts("\t\t\t</ThetaBounds>"); |
146 |
puts("\t\t\t</AngleBasisBlock>"); |
147 |
} |
148 |
puts("\t\t</AngleBasis>"); |
149 |
puts("\t</DataDefinition>"); |
150 |
} |
151 |
|
152 |
/* Output XML data prologue to stdout */ |
153 |
static void |
154 |
data_prologue() |
155 |
{ |
156 |
static const char *bsdf_type[4] = { |
157 |
"Reflection Front", |
158 |
"Transmission Front", |
159 |
"Transmission Back", |
160 |
"Reflection Back" |
161 |
}; |
162 |
|
163 |
puts("\t<WavelengthData>"); |
164 |
puts("\t\t<LayerNumber>System</LayerNumber>"); |
165 |
puts("\t\t<Wavelength unit=\"Integral\">Visible</Wavelength>"); |
166 |
puts("\t\t<SourceSpectrum>CIE Illuminant D65 1nm.ssp</SourceSpectrum>"); |
167 |
puts("\t\t<DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>"); |
168 |
puts("\t\t<WavelengthDataBlock>"); |
169 |
printf("\t\t\t<WavelengthDataDirection>%s</WavelengthDataDirection>\n", |
170 |
bsdf_type[(input_orient>0)<<1 | (output_orient>0)]); |
171 |
printf("\t\t\t<ColumnAngleBasis>%s</ColumnAngleBasis>\n", kbasis); |
172 |
printf("\t\t\t<RowAngleBasis>%s</RowAngleBasis>\n", kbasis); |
173 |
puts("\t\t\t<ScatteringDataType>BTDF</ScatteringDataType>"); |
174 |
puts("\t\t\t<ScatteringData>"); |
175 |
} |
176 |
|
177 |
/* Output XML data epilogue to stdout */ |
178 |
static void |
179 |
data_epilogue(void) |
180 |
{ |
181 |
puts("\t\t\t</ScatteringData>"); |
182 |
puts("\t\t</WavelengthDataBlock>"); |
183 |
puts("\t</WavelengthData>"); |
184 |
} |
185 |
|
186 |
/* Output XML epilogue to stdout */ |
187 |
static void |
188 |
xml_epilogue(void) |
189 |
{ |
190 |
puts("</Layer>"); |
191 |
puts("</Optical>"); |
192 |
puts("</WindowElement>"); |
193 |
} |
194 |
|
195 |
/* Load and resample XML BSDF description using Klems basis */ |
196 |
static void |
197 |
eval_bsdf(const char *fname) |
198 |
{ |
199 |
ANGLE_BASIS *abp = get_basis(kbasis); |
200 |
SDData bsd; |
201 |
SDError ec; |
202 |
FVECT vin, vout; |
203 |
SDValue sv; |
204 |
double sum; |
205 |
int i, j, n; |
206 |
|
207 |
SDclearBSDF(&bsd, fname); /* load BSDF file */ |
208 |
if ((ec = SDloadFile(&bsd, fname)) != SDEnone) |
209 |
goto err; |
210 |
xml_prologue(&bsd); /* pass geometry */ |
211 |
/* front reflection */ |
212 |
if (bsd.rf != NULL || bsd.rLambFront.cieY > .002) { |
213 |
input_orient = 1; output_orient = 1; |
214 |
data_prologue(); |
215 |
for (j = 0; j < abp->nangles; j++) { |
216 |
for (i = 0; i < abp->nangles; i++) { |
217 |
sum = 0; /* average over patches */ |
218 |
for (n = npsamps; n-- > 0; ) { |
219 |
fo_getvec(vout, j+(n+frandom())/npsamps, abp); |
220 |
fi_getvec(vin, i+urand(n), abp); |
221 |
ec = SDevalBSDF(&sv, vout, vin, &bsd); |
222 |
if (ec != SDEnone) |
223 |
goto err; |
224 |
sum += sv.cieY; |
225 |
} |
226 |
printf("\t%.3e\n", sum/npsamps); |
227 |
} |
228 |
putchar('\n'); /* extra space between rows */ |
229 |
} |
230 |
data_epilogue(); |
231 |
} |
232 |
/* back reflection */ |
233 |
if (bsd.rb != NULL || bsd.rLambBack.cieY > .002) { |
234 |
input_orient = -1; output_orient = -1; |
235 |
data_prologue(); |
236 |
for (j = 0; j < abp->nangles; j++) { |
237 |
for (i = 0; i < abp->nangles; i++) { |
238 |
sum = 0; /* average over patches */ |
239 |
for (n = npsamps; n-- > 0; ) { |
240 |
bo_getvec(vout, j+(n+frandom())/npsamps, abp); |
241 |
bi_getvec(vin, i+urand(n), abp); |
242 |
ec = SDevalBSDF(&sv, vout, vin, &bsd); |
243 |
if (ec != SDEnone) |
244 |
goto err; |
245 |
sum += sv.cieY; |
246 |
} |
247 |
printf("\t%.3e\n", sum/npsamps); |
248 |
} |
249 |
putchar('\n'); /* extra space between rows */ |
250 |
} |
251 |
data_epilogue(); |
252 |
} |
253 |
/* front transmission */ |
254 |
if (bsd.tf != NULL || bsd.tLamb.cieY > .002) { |
255 |
input_orient = 1; output_orient = -1; |
256 |
data_prologue(); |
257 |
for (j = 0; j < abp->nangles; j++) { |
258 |
for (i = 0; i < abp->nangles; i++) { |
259 |
sum = 0; /* average over patches */ |
260 |
for (n = npsamps; n-- > 0; ) { |
261 |
bo_getvec(vout, j+(n+frandom())/npsamps, abp); |
262 |
fi_getvec(vin, i+urand(n), abp); |
263 |
ec = SDevalBSDF(&sv, vout, vin, &bsd); |
264 |
if (ec != SDEnone) |
265 |
goto err; |
266 |
sum += sv.cieY; |
267 |
} |
268 |
printf("\t%.3e\n", sum/npsamps); |
269 |
} |
270 |
putchar('\n'); /* extra space between rows */ |
271 |
} |
272 |
data_epilogue(); |
273 |
} |
274 |
/* back transmission */ |
275 |
if ((bsd.tb != NULL) | (bsd.tf != NULL)) { |
276 |
input_orient = -1; output_orient = 1; |
277 |
data_prologue(); |
278 |
for (j = 0; j < abp->nangles; j++) { |
279 |
for (i = 0; i < abp->nangles; i++) { |
280 |
sum = 0; /* average over patches */ |
281 |
for (n = npsamps; n-- > 0; ) { |
282 |
fo_getvec(vout, j+(n+frandom())/npsamps, abp); |
283 |
bi_getvec(vin, i+urand(n), abp); |
284 |
ec = SDevalBSDF(&sv, vout, vin, &bsd); |
285 |
if (ec != SDEnone) |
286 |
goto err; |
287 |
sum += sv.cieY; |
288 |
} |
289 |
printf("\t%.3e\n", sum/npsamps); |
290 |
} |
291 |
putchar('\n'); /* extra space between rows */ |
292 |
} |
293 |
data_epilogue(); |
294 |
} |
295 |
SDfreeBSDF(&bsd); /* all done */ |
296 |
return; |
297 |
err: |
298 |
SDreportError(ec, stderr); |
299 |
exit(1); |
300 |
} |
301 |
|
302 |
/* Interpolate and output a BSDF function using Klems basis */ |
303 |
static void |
304 |
eval_function(char *funame) |
305 |
{ |
306 |
ANGLE_BASIS *abp = get_basis(kbasis); |
307 |
int assignD = (fundefined(funame) < 6); |
308 |
double iovec[6]; |
309 |
double sum; |
310 |
int i, j, n; |
311 |
|
312 |
initurand(npsamps); |
313 |
data_prologue(); /* begin output */ |
314 |
for (j = 0; j < abp->nangles; j++) { /* run through directions */ |
315 |
for (i = 0; i < abp->nangles; i++) { |
316 |
sum = 0; |
317 |
for (n = npsamps; n--; ) { /* average over patches */ |
318 |
if (output_orient > 0) |
319 |
fo_getvec(iovec+3, j+(n+frandom())/npsamps, abp); |
320 |
else |
321 |
bo_getvec(iovec+3, j+(n+frandom())/npsamps, abp); |
322 |
|
323 |
if (input_orient > 0) |
324 |
fi_getvec(iovec, i+urand(n), abp); |
325 |
else |
326 |
bi_getvec(iovec, i+urand(n), abp); |
327 |
|
328 |
if (assignD) { |
329 |
varset("Dx", '=', -iovec[3]); |
330 |
varset("Dy", '=', -iovec[4]); |
331 |
varset("Dz", '=', -iovec[5]); |
332 |
++eclock; |
333 |
} |
334 |
sum += funvalue(funame, 6, iovec); |
335 |
} |
336 |
printf("\t%.3e\n", sum/npsamps); |
337 |
} |
338 |
putchar('\n'); |
339 |
prog_show((j+1.)/abp->nangles); |
340 |
} |
341 |
data_epilogue(); /* finish output */ |
342 |
prog_done(); |
343 |
} |
344 |
|
345 |
/* Interpolate and output a radial basis function BSDF representation */ |
346 |
static void |
347 |
eval_rbf(void) |
348 |
{ |
349 |
ANGLE_BASIS *abp = get_basis(kbasis); |
350 |
float bsdfarr[MAXPATCHES*MAXPATCHES]; |
351 |
FVECT vin, vout; |
352 |
RBFNODE *rbf; |
353 |
double sum; |
354 |
int i, j, n; |
355 |
/* sanity check */ |
356 |
if (abp->nangles > MAXPATCHES) { |
357 |
fprintf(stderr, "%s: too many patches!\n", progname); |
358 |
exit(1); |
359 |
} |
360 |
data_prologue(); /* begin output */ |
361 |
for (i = 0; i < abp->nangles; i++) { |
362 |
if (input_orient > 0) /* use incident patch center */ |
363 |
fi_getvec(vin, i+.5*(i>0), abp); |
364 |
else |
365 |
bi_getvec(vin, i+.5*(i>0), abp); |
366 |
|
367 |
rbf = advect_rbf(vin, lobe_lim); /* compute radial basis func */ |
368 |
|
369 |
for (j = 0; j < abp->nangles; j++) { |
370 |
sum = 0; /* sample over exiting patch */ |
371 |
for (n = npsamps; n--; ) { |
372 |
if (output_orient > 0) |
373 |
fo_getvec(vout, j+(n+frandom())/npsamps, abp); |
374 |
else |
375 |
bo_getvec(vout, j+(n+frandom())/npsamps, abp); |
376 |
|
377 |
sum += eval_rbfrep(rbf, vout); |
378 |
} |
379 |
fo_getvec(vout, j+.5, abp); /* use centered secant */ |
380 |
bsdfarr[j*abp->nangles + i] = sum / (double)npsamps; |
381 |
} |
382 |
if (rbf != NULL) |
383 |
free(rbf); |
384 |
prog_show((i+1.)/abp->nangles); |
385 |
} |
386 |
n = 0; /* write out our matrix */ |
387 |
for (j = 0; j < abp->nangles; j++) { |
388 |
for (i = 0; i < abp->nangles; i++) |
389 |
printf("\t%.3e\n", bsdfarr[n++]); |
390 |
putchar('\n'); |
391 |
} |
392 |
data_epilogue(); /* finish output */ |
393 |
prog_done(); |
394 |
} |
395 |
|
396 |
/* Read in BSDF and interpolate as Klems matrix representation */ |
397 |
int |
398 |
main(int argc, char *argv[]) |
399 |
{ |
400 |
int dofwd = 0, dobwd = 1; |
401 |
char *cp; |
402 |
int i, na; |
403 |
|
404 |
progname = argv[0]; |
405 |
esupport |= E_VARIABLE|E_FUNCTION|E_RCONST; |
406 |
esupport &= ~(E_INCHAN|E_OUTCHAN); |
407 |
scompile("PI:3.14159265358979323846", NULL, 0); |
408 |
biggerlib(); |
409 |
for (i = 1; i < argc && (argv[i][0] == '-') | (argv[i][0] == '+'); i++) |
410 |
switch (argv[i][1]) { /* get options */ |
411 |
case 'n': |
412 |
npsamps = atoi(argv[++i]); |
413 |
if (npsamps <= 0) |
414 |
goto userr; |
415 |
break; |
416 |
case 'e': |
417 |
scompile(argv[++i], NULL, 0); |
418 |
single_plane_incident = 0; |
419 |
break; |
420 |
case 'f': |
421 |
if (!argv[i][2]) { |
422 |
fcompile(argv[++i]); |
423 |
single_plane_incident = 0; |
424 |
} else |
425 |
dofwd = (argv[i][0] == '+'); |
426 |
break; |
427 |
case 'b': |
428 |
dobwd = (argv[i][0] == '+'); |
429 |
break; |
430 |
case 'h': |
431 |
kbasis = "LBNL/Klems Half"; |
432 |
break; |
433 |
case 'q': |
434 |
kbasis = "LBNL/Klems Quarter"; |
435 |
break; |
436 |
case 'l': |
437 |
lobe_lim = atoi(argv[++i]); |
438 |
break; |
439 |
case 'p': |
440 |
do_prog = atoi(argv[i]+2); |
441 |
break; |
442 |
default: |
443 |
goto userr; |
444 |
} |
445 |
if (single_plane_incident >= 0) { /* function-based BSDF? */ |
446 |
if (i != argc-1 || fundefined(argv[i]) != 6) { |
447 |
fprintf(stderr, |
448 |
"%s: need single function with 6 arguments: bsdf(ix,iy,iz,ox,oy,oz)\n", |
449 |
progname); |
450 |
fprintf(stderr, "\tor 3 arguments using Dx,Dy,Dz: bsdf(ix,iy,iz)\n"); |
451 |
goto userr; |
452 |
} |
453 |
++eclock; |
454 |
xml_header(argc, argv); /* start XML output */ |
455 |
xml_prologue(NULL); |
456 |
if (dofwd) { |
457 |
input_orient = -1; |
458 |
output_orient = -1; |
459 |
prog_start("Evaluating outside reflectance"); |
460 |
eval_function(argv[i]); |
461 |
output_orient = 1; |
462 |
prog_start("Evaluating outside->inside transmission"); |
463 |
eval_function(argv[i]); |
464 |
} |
465 |
if (dobwd) { |
466 |
input_orient = 1; |
467 |
output_orient = 1; |
468 |
prog_start("Evaluating inside reflectance"); |
469 |
eval_function(argv[i]); |
470 |
output_orient = -1; |
471 |
prog_start("Evaluating inside->outside transmission"); |
472 |
eval_function(argv[i]); |
473 |
} |
474 |
xml_epilogue(); /* finish XML output & exit */ |
475 |
return(0); |
476 |
} |
477 |
/* XML input? */ |
478 |
if (i == argc-1 && (cp = argv[i]+strlen(argv[i])-4) > argv[i] && |
479 |
!strcasecmp(cp, ".xml")) { |
480 |
xml_header(argc, argv); /* start XML output */ |
481 |
eval_bsdf(argv[i]); /* load & resample BSDF */ |
482 |
xml_epilogue(); /* finish XML output & exit */ |
483 |
return(0); |
484 |
} |
485 |
if (i < argc) { /* open input files if given */ |
486 |
int nbsdf = 0; |
487 |
for ( ; i < argc; i++) { /* interpolate each component */ |
488 |
char pbuf[256]; |
489 |
FILE *fpin = fopen(argv[i], "rb"); |
490 |
if (fpin == NULL) { |
491 |
fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", |
492 |
progname, argv[i]); |
493 |
return(1); |
494 |
} |
495 |
if (!load_bsdf_rep(fpin)) |
496 |
return(1); |
497 |
fclose(fpin); |
498 |
if (!nbsdf++) { /* start XML on first dist. */ |
499 |
xml_header(argc, argv); |
500 |
xml_prologue(NULL); |
501 |
} |
502 |
sprintf(pbuf, "Interpolating component '%s'", argv[i]); |
503 |
prog_start(pbuf); |
504 |
eval_rbf(); |
505 |
} |
506 |
xml_epilogue(); /* finish XML output & exit */ |
507 |
return(0); |
508 |
} |
509 |
SET_FILE_BINARY(stdin); /* load from stdin */ |
510 |
if (!load_bsdf_rep(stdin)) |
511 |
return(1); |
512 |
xml_header(argc, argv); /* start XML output */ |
513 |
xml_prologue(NULL); |
514 |
prog_start("Interpolating from standard input"); |
515 |
eval_rbf(); /* resample dist. */ |
516 |
xml_epilogue(); /* finish XML output & exit */ |
517 |
return(0); |
518 |
userr: |
519 |
fprintf(stderr, |
520 |
"Usage: %s [-n spp][-h|-q][-l maxlobes] [bsdf.sir ..] > bsdf.xml\n", progname); |
521 |
fprintf(stderr, |
522 |
" or: %s [-n spp][-h|-q] bsdf_in.xml > bsdf_out.xml\n", progname); |
523 |
fprintf(stderr, |
524 |
" or: %s [-n spp][-h|-q][{+|-}for[ward]][{+|-}b[ackward]][-e expr][-f file] bsdf_func > bsdf.xml\n", |
525 |
progname); |
526 |
return(1); |
527 |
} |