#ifndef lint static const char RCSid[] = "$Id: bsdf2klems.c,v 2.14 2014/03/12 22:24:59 greg Exp $"; #endif /* * Load measured BSDF interpolant and write out as XML file with Klems matrix. * * G. Ward */ #define _USE_MATH_DEFINES #include #include #include #include #include "random.h" #include "platform.h" #include "calcomp.h" #include "bsdfrep.h" #include "bsdf_m.h" /* assumed maximum # Klems patches */ #define MAXPATCHES 145 /* global argv[0] */ char *progname; /* selected basis function name */ static const char *kbasis = "LBNL/Klems Full"; /* number of BSDF samples per patch */ static int npsamps = 256; /* limit on number of RBF lobes */ static int lobe_lim = 15000; /* progress bar length */ static int do_prog = 79; /* Start new progress bar */ #define prog_start(s) if (do_prog) fprintf(stderr, "%s: %s...\n", progname, s); else /* Draw progress bar of the appropriate length */ static void prog_show(double frac) { char pbar[256]; int nchars; if (do_prog <= 1) return; if (do_prog > sizeof(pbar)-2) do_prog = sizeof(pbar)-2; if (frac < 0) frac = 0; else if (frac > 1) frac = 1; nchars = do_prog*frac + .5; pbar[0] = '\r'; memset(pbar+1, '*', nchars); memset(pbar+1+nchars, '-', do_prog-nchars); pbar[do_prog+1] = '\0'; fputs(pbar, stderr); } /* Finish progress bar */ static void prog_done(void) { int n = do_prog; if (n <= 1) return; fputc('\r', stderr); while (n--) fputc(' ', stderr); fputc('\r', stderr); } /* Return angle basis corresponding to the given name */ static ANGLE_BASIS * get_basis(const char *bn) { int n = nabases; while (n-- > 0) if (!strcasecmp(bn, abase_list[n].name)) return &abase_list[n]; return NULL; } /* Output XML header to stdout */ static void xml_header(int ac, char *av[]) { puts(""); puts(""); fputs(""); } /* Output XML prologue to stdout */ static void xml_prologue(const SDData *sd) { const char *matn = (sd && sd->matn[0]) ? sd->matn : bsdf_name[0] ? bsdf_name : "Unknown"; const char *makr = (sd && sd->makr[0]) ? sd->makr : bsdf_manuf[0] ? bsdf_manuf : "Unknown"; ANGLE_BASIS *abp = get_basis(kbasis); int i; if (abp == NULL) { fprintf(stderr, "%s: unknown angle basis '%s'\n", progname, kbasis); exit(1); } puts("System"); puts("BSDF"); puts(""); puts(""); puts("\t"); printf("\t\t%s\n", matn); printf("\t\t%s\n", makr); if (sd && sd->dim[2] > .001) { printf("\t\t%.3f\n", sd->dim[2]); printf("\t\t%.3f\n", sd->dim[0]); printf("\t\t%.3f\n", sd->dim[1]); } puts("\t\tOther"); puts("\t"); if (sd && sd->mgf != NULL) { puts("\t"); puts("\t\t"); fputs(sd->mgf, stdout); puts(""); puts("\t"); } puts("\t"); puts("\t\tColumns"); puts("\t\t"); printf("\t\t\t%s\n", kbasis); for (i = 0; abp->lat[i].nphis; i++) { puts("\t\t\t"); printf("\t\t\t%g\n", i ? .5*(abp->lat[i].tmin + abp->lat[i+1].tmin) : .0 ); printf("\t\t\t%d\n", abp->lat[i].nphis); puts("\t\t\t"); printf("\t\t\t\t%g\n", abp->lat[i].tmin); printf("\t\t\t\t%g\n", abp->lat[i+1].tmin); puts("\t\t\t"); puts("\t\t\t"); } puts("\t\t"); puts("\t"); } /* Output XML data prologue to stdout */ static void data_prologue() { static const char *bsdf_type[4] = { "Reflection Front", "Transmission Front", "Transmission Back", "Reflection Back" }; puts("\t"); puts("\t\tSystem"); puts("\t\tVisible"); puts("\t\tCIE Illuminant D65 1nm.ssp"); puts("\t\tASTM E308 1931 Y.dsp"); puts("\t\t"); printf("\t\t\t%s\n", bsdf_type[(input_orient>0)<<1 | (output_orient>0)]); printf("\t\t\t%s\n", kbasis); printf("\t\t\t%s\n", kbasis); puts("\t\t\tBTDF"); puts("\t\t\t"); } /* Output XML data epilogue to stdout */ static void data_epilogue(void) { puts("\t\t\t"); puts("\t\t"); puts("\t"); } /* Output XML epilogue to stdout */ static void xml_epilogue(void) { puts(""); puts(""); puts(""); } /* Load and resample XML BSDF description using Klems basis */ static void eval_bsdf(const char *fname) { ANGLE_BASIS *abp = get_basis(kbasis); SDData bsd; SDError ec; FVECT vin, vout; SDValue sv; double sum; int i, j, n; SDclearBSDF(&bsd, fname); /* load BSDF file */ if ((ec = SDloadFile(&bsd, fname)) != SDEnone) goto err; xml_prologue(&bsd); /* pass geometry */ /* front reflection */ if (bsd.rf != NULL || bsd.rLambFront.cieY > .002) { input_orient = 1; output_orient = 1; data_prologue(); for (j = 0; j < abp->nangles; j++) { for (i = 0; i < abp->nangles; i++) { sum = 0; /* average over patches */ for (n = npsamps; n-- > 0; ) { fo_getvec(vout, j+(n+frandom())/npsamps, abp); fi_getvec(vin, i+urand(n), abp); ec = SDevalBSDF(&sv, vout, vin, &bsd); if (ec != SDEnone) goto err; sum += sv.cieY; } printf("\t%.3e\n", sum/npsamps); } putchar('\n'); /* extra space between rows */ } data_epilogue(); } /* back reflection */ if (bsd.rb != NULL || bsd.rLambBack.cieY > .002) { input_orient = -1; output_orient = -1; data_prologue(); for (j = 0; j < abp->nangles; j++) { for (i = 0; i < abp->nangles; i++) { sum = 0; /* average over patches */ for (n = npsamps; n-- > 0; ) { bo_getvec(vout, j+(n+frandom())/npsamps, abp); bi_getvec(vin, i+urand(n), abp); ec = SDevalBSDF(&sv, vout, vin, &bsd); if (ec != SDEnone) goto err; sum += sv.cieY; } printf("\t%.3e\n", sum/npsamps); } putchar('\n'); /* extra space between rows */ } data_epilogue(); } /* front transmission */ if (bsd.tf != NULL || bsd.tLamb.cieY > .002) { input_orient = 1; output_orient = -1; data_prologue(); for (j = 0; j < abp->nangles; j++) { for (i = 0; i < abp->nangles; i++) { sum = 0; /* average over patches */ for (n = npsamps; n-- > 0; ) { bo_getvec(vout, j+(n+frandom())/npsamps, abp); fi_getvec(vin, i+urand(n), abp); ec = SDevalBSDF(&sv, vout, vin, &bsd); if (ec != SDEnone) goto err; sum += sv.cieY; } printf("\t%.3e\n", sum/npsamps); } putchar('\n'); /* extra space between rows */ } data_epilogue(); } /* back transmission */ if ((bsd.tb != NULL) | (bsd.tf != NULL)) { input_orient = -1; output_orient = 1; data_prologue(); for (j = 0; j < abp->nangles; j++) { for (i = 0; i < abp->nangles; i++) { sum = 0; /* average over patches */ for (n = npsamps; n-- > 0; ) { fo_getvec(vout, j+(n+frandom())/npsamps, abp); bi_getvec(vin, i+urand(n), abp); ec = SDevalBSDF(&sv, vout, vin, &bsd); if (ec != SDEnone) goto err; sum += sv.cieY; } printf("\t%.3e\n", sum/npsamps); } putchar('\n'); /* extra space between rows */ } data_epilogue(); } SDfreeBSDF(&bsd); /* all done */ return; err: SDreportError(ec, stderr); exit(1); } /* Interpolate and output a BSDF function using Klems basis */ static void eval_function(char *funame) { ANGLE_BASIS *abp = get_basis(kbasis); int assignD = (fundefined(funame) < 6); double iovec[6]; double sum; int i, j, n; initurand(npsamps); data_prologue(); /* begin output */ for (j = 0; j < abp->nangles; j++) { /* run through directions */ for (i = 0; i < abp->nangles; i++) { sum = 0; for (n = npsamps; n--; ) { /* average over patches */ if (output_orient > 0) fo_getvec(iovec+3, j+(n+frandom())/npsamps, abp); else bo_getvec(iovec+3, j+(n+frandom())/npsamps, abp); if (input_orient > 0) fi_getvec(iovec, i+urand(n), abp); else bi_getvec(iovec, i+urand(n), abp); if (assignD) { varset("Dx", '=', -iovec[3]); varset("Dy", '=', -iovec[4]); varset("Dz", '=', -iovec[5]); ++eclock; } sum += funvalue(funame, 6, iovec); } printf("\t%.3e\n", sum/npsamps); } putchar('\n'); prog_show((j+1.)/abp->nangles); } data_epilogue(); /* finish output */ prog_done(); } /* Interpolate and output a radial basis function BSDF representation */ static void eval_rbf(void) { ANGLE_BASIS *abp = get_basis(kbasis); float bsdfarr[MAXPATCHES*MAXPATCHES]; FVECT vin, vout; RBFNODE *rbf; double sum; int i, j, n; /* sanity check */ if (abp->nangles > MAXPATCHES) { fprintf(stderr, "%s: too many patches!\n", progname); exit(1); } data_prologue(); /* begin output */ for (i = 0; i < abp->nangles; i++) { if (input_orient > 0) /* use incident patch center */ fi_getvec(vin, i+.5*(i>0), abp); else bi_getvec(vin, i+.5*(i>0), abp); rbf = advect_rbf(vin, lobe_lim); /* compute radial basis func */ for (j = 0; j < abp->nangles; j++) { sum = 0; /* sample over exiting patch */ for (n = npsamps; n--; ) { if (output_orient > 0) fo_getvec(vout, j+(n+frandom())/npsamps, abp); else bo_getvec(vout, j+(n+frandom())/npsamps, abp); sum += eval_rbfrep(rbf, vout); } fo_getvec(vout, j+.5, abp); /* use centered secant */ bsdfarr[j*abp->nangles + i] = sum / (npsamps*vout[2]); } if (rbf != NULL) free(rbf); prog_show((i+1.)/abp->nangles); } n = 0; /* write out our matrix */ for (j = 0; j < abp->nangles; j++) { for (i = 0; i < abp->nangles; i++) printf("\t%.3e\n", bsdfarr[n++]); putchar('\n'); } data_epilogue(); /* finish output */ prog_done(); } /* Read in BSDF and interpolate as Klems matrix representation */ int main(int argc, char *argv[]) { int dofwd = 0, dobwd = 1; char *cp; int i, na; progname = argv[0]; esupport |= E_VARIABLE|E_FUNCTION|E_RCONST; esupport &= ~(E_INCHAN|E_OUTCHAN); scompile("PI:3.14159265358979323846", NULL, 0); biggerlib(); for (i = 1; i < argc && (argv[i][0] == '-') | (argv[i][0] == '+'); i++) switch (argv[i][1]) { /* get options */ case 'n': npsamps = atoi(argv[++i]); if (npsamps <= 0) goto userr; break; case 'e': scompile(argv[++i], NULL, 0); single_plane_incident = 0; break; case 'f': if (!argv[i][2]) { fcompile(argv[++i]); single_plane_incident = 0; } else dofwd = (argv[i][0] == '+'); break; case 'b': dobwd = (argv[i][0] == '+'); break; case 'h': kbasis = "LBNL/Klems Half"; break; case 'q': kbasis = "LBNL/Klems Quarter"; break; case 'l': lobe_lim = atoi(argv[++i]); break; case 'p': do_prog = atoi(argv[i]+2); break; default: goto userr; } if (single_plane_incident >= 0) { /* function-based BSDF? */ if (i != argc-1 || fundefined(argv[i]) != 6) { fprintf(stderr, "%s: need single function with 6 arguments: bsdf(ix,iy,iz,ox,oy,oz)\n", progname); fprintf(stderr, "\tor 3 arguments using Dx,Dy,Dz: bsdf(ix,iy,iz)\n"); goto userr; } ++eclock; xml_header(argc, argv); /* start XML output */ xml_prologue(NULL); if (dofwd) { input_orient = -1; output_orient = -1; prog_start("Evaluating outside reflectance"); eval_function(argv[i]); output_orient = 1; prog_start("Evaluating outside->inside transmission"); eval_function(argv[i]); } if (dobwd) { input_orient = 1; output_orient = 1; prog_start("Evaluating inside reflectance"); eval_function(argv[i]); output_orient = -1; prog_start("Evaluating inside->outside transmission"); eval_function(argv[i]); } xml_epilogue(); /* finish XML output & exit */ return(0); } /* XML input? */ if (i == argc-1 && (cp = argv[i]+strlen(argv[i])-4) > argv[i] && !strcasecmp(cp, ".xml")) { xml_header(argc, argv); /* start XML output */ eval_bsdf(argv[i]); /* load & resample BSDF */ xml_epilogue(); /* finish XML output & exit */ return(0); } if (i < argc) { /* open input files if given */ int nbsdf = 0; for ( ; i < argc; i++) { /* interpolate each component */ char pbuf[256]; FILE *fpin = fopen(argv[i], "rb"); if (fpin == NULL) { fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n", progname, argv[i]); return(1); } if (!load_bsdf_rep(fpin)) return(1); fclose(fpin); if (!nbsdf++) { /* start XML on first dist. */ xml_header(argc, argv); xml_prologue(NULL); } sprintf(pbuf, "Interpolating component '%s'", argv[i]); prog_start(pbuf); eval_rbf(); } xml_epilogue(); /* finish XML output & exit */ return(0); } SET_FILE_BINARY(stdin); /* load from stdin */ if (!load_bsdf_rep(stdin)) return(1); xml_header(argc, argv); /* start XML output */ xml_prologue(NULL); prog_start("Interpolating from standard input"); eval_rbf(); /* resample dist. */ xml_epilogue(); /* finish XML output & exit */ return(0); userr: fprintf(stderr, "Usage: %s [-n spp][-h|-q][-l maxlobes] [bsdf.sir ..] > bsdf.xml\n", progname); fprintf(stderr, " or: %s [-n spp][-h|-q] bsdf_in.xml > bsdf_out.xml\n", progname); fprintf(stderr, " or: %s [-n spp][-h|-q][{+|-}for[ward]][{+|-}b[ackward]][-e expr][-f file] bsdf_func > bsdf.xml\n", progname); return(1); }