ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdf2klems.c
Revision: 2.12
Committed: Thu Nov 21 20:09:06 2013 UTC (10 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.11: +4 -3 lines
Log Message:
Changed secant correction to patch centers for better normalization

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf2klems.c,v 2.11 2013/11/09 05:47:49 greg Exp $";
3 #endif
4 /*
5 * Load measured BSDF interpolant and write out as XML file with Klems matrix.
6 *
7 * G. Ward
8 */
9
10 #define _USE_MATH_DEFINES
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <math.h>
15 #include "random.h"
16 #include "platform.h"
17 #include "calcomp.h"
18 #include "bsdfrep.h"
19 #include "bsdf_m.h"
20 /* assumed maximum # Klems patches */
21 #define MAXPATCHES 145
22 /* global argv[0] */
23 char *progname;
24 /* selected basis function name */
25 static const char *kbasis = "LBNL/Klems Full";
26 /* number of BSDF samples per patch */
27 static int npsamps = 256;
28 /* limit on number of RBF lobes */
29 static int lobe_lim = 15000;
30
31 /* Return angle basis corresponding to the given name */
32 ANGLE_BASIS *
33 get_basis(const char *bn)
34 {
35 int n = nabases;
36
37 while (n-- > 0)
38 if (!strcasecmp(bn, abase_list[n].name))
39 return &abase_list[n];
40 return NULL;
41 }
42
43 /* Output XML header to stdout */
44 static void
45 xml_header(int ac, char *av[])
46 {
47 puts("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
48 puts("<WindowElement xmlns=\"http://windows.lbl.gov\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:schemaLocation=\"http://windows.lbl.gov/BSDF-v1.4.xsd\">");
49 fputs("<!-- File produced by:", stdout);
50 while (ac-- > 0) {
51 fputc(' ', stdout);
52 fputs(*av++, stdout);
53 }
54 puts(" -->");
55 }
56
57 /* Output XML prologue to stdout */
58 static void
59 xml_prologue(const SDData *sd)
60 {
61 const char *matn = (sd && sd->matn[0]) ? sd->matn :
62 bsdf_name[0] ? bsdf_name : "Unknown";
63 const char *makr = (sd && sd->makr[0]) ? sd->makr :
64 bsdf_manuf[0] ? bsdf_manuf : "Unknown";
65 ANGLE_BASIS *abp = get_basis(kbasis);
66 int i;
67
68 if (abp == NULL) {
69 fprintf(stderr, "%s: unknown angle basis '%s'\n", progname, kbasis);
70 exit(1);
71 }
72 puts("<WindowElementType>System</WindowElementType>");
73 puts("<FileType>BSDF</FileType>");
74 puts("<Optical>");
75 puts("<Layer>");
76 puts("\t<Material>");
77 printf("\t\t<Name>%s</Name>\n", matn);
78 printf("\t\t<Manufacturer>%s</Manufacturer>\n", makr);
79 if (sd && sd->dim[2] > .001) {
80 printf("\t\t<Thickness unit=\"meter\">%.3f</Thickness>\n", sd->dim[2]);
81 printf("\t\t<Width unit=\"meter\">%.3f</Width>\n", sd->dim[0]);
82 printf("\t\t<Height unit=\"meter\">%.3f</Height>\n", sd->dim[1]);
83 }
84 puts("\t\t<DeviceType>Other</DeviceType>");
85 puts("\t</Material>");
86 if (sd && sd->mgf != NULL) {
87 puts("\t<Geometry format=\"MGF\">");
88 puts("\t\t<MGFblock unit=\"meter\">");
89 fputs(sd->mgf, stdout);
90 puts("</MGFblock>");
91 puts("\t</Geometry>");
92 }
93 puts("\t<DataDefinition>");
94 puts("\t\t<IncidentDataStructure>Columns</IncidentDataStructure>");
95 puts("\t\t<AngleBasis>");
96 printf("\t\t\t<AngleBasisName>%s</AngleBasisName>\n", kbasis);
97 for (i = 0; abp->lat[i].nphis; i++) {
98 puts("\t\t\t<AngleBasisBlock>");
99 printf("\t\t\t<Theta>%g</Theta>\n", i ?
100 .5*(abp->lat[i].tmin + abp->lat[i+1].tmin) :
101 .0 );
102 printf("\t\t\t<nPhis>%d</nPhis>\n", abp->lat[i].nphis);
103 puts("\t\t\t<ThetaBounds>");
104 printf("\t\t\t\t<LowerTheta>%g</LowerTheta>\n", abp->lat[i].tmin);
105 printf("\t\t\t\t<UpperTheta>%g</UpperTheta>\n", abp->lat[i+1].tmin);
106 puts("\t\t\t</ThetaBounds>");
107 puts("\t\t\t</AngleBasisBlock>");
108 }
109 puts("\t\t</AngleBasis>");
110 puts("\t</DataDefinition>");
111 }
112
113 /* Output XML data prologue to stdout */
114 static void
115 data_prologue()
116 {
117 static const char *bsdf_type[4] = {
118 "Reflection Front",
119 "Transmission Front",
120 "Transmission Back",
121 "Reflection Back"
122 };
123
124 puts("\t<WavelengthData>");
125 puts("\t\t<LayerNumber>System</LayerNumber>");
126 puts("\t\t<Wavelength unit=\"Integral\">Visible</Wavelength>");
127 puts("\t\t<SourceSpectrum>CIE Illuminant D65 1nm.ssp</SourceSpectrum>");
128 puts("\t\t<DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>");
129 puts("\t\t<WavelengthDataBlock>");
130 printf("\t\t\t<WavelengthDataDirection>%s</WavelengthDataDirection>\n",
131 bsdf_type[(input_orient>0)<<1 | (output_orient>0)]);
132 printf("\t\t\t<ColumnAngleBasis>%s</ColumnAngleBasis>\n", kbasis);
133 printf("\t\t\t<RowAngleBasis>%s</RowAngleBasis>\n", kbasis);
134 puts("\t\t\t<ScatteringDataType>BTDF</ScatteringDataType>");
135 puts("\t\t\t<ScatteringData>");
136 }
137
138 /* Output XML data epilogue to stdout */
139 static void
140 data_epilogue(void)
141 {
142 puts("\t\t\t</ScatteringData>");
143 puts("\t\t</WavelengthDataBlock>");
144 puts("\t</WavelengthData>");
145 }
146
147 /* Output XML epilogue to stdout */
148 static void
149 xml_epilogue(void)
150 {
151 puts("</Layer>");
152 puts("</Optical>");
153 puts("</WindowElement>");
154 }
155
156 /* Load and resample XML BSDF description using Klems basis */
157 static void
158 eval_bsdf(const char *fname)
159 {
160 ANGLE_BASIS *abp = get_basis(kbasis);
161 SDData bsd;
162 SDError ec;
163 FVECT vin, vout;
164 SDValue sv;
165 double sum;
166 int i, j, n;
167
168 SDclearBSDF(&bsd, fname); /* load BSDF file */
169 if ((ec = SDloadFile(&bsd, fname)) != SDEnone)
170 goto err;
171 xml_prologue(&bsd); /* pass geometry */
172 /* front reflection */
173 if (bsd.rf != NULL || bsd.rLambFront.cieY > .002) {
174 input_orient = 1; output_orient = 1;
175 data_prologue();
176 for (j = 0; j < abp->nangles; j++) {
177 for (i = 0; i < abp->nangles; i++) {
178 sum = 0; /* average over patches */
179 for (n = npsamps; n-- > 0; ) {
180 fo_getvec(vout, j+(n+frandom())/npsamps, abp);
181 fi_getvec(vin, i+urand(n), abp);
182 ec = SDevalBSDF(&sv, vout, vin, &bsd);
183 if (ec != SDEnone)
184 goto err;
185 sum += sv.cieY;
186 }
187 printf("\t%.3e\n", sum/npsamps);
188 }
189 putchar('\n'); /* extra space between rows */
190 }
191 data_epilogue();
192 }
193 /* back reflection */
194 if (bsd.rb != NULL || bsd.rLambBack.cieY > .002) {
195 input_orient = -1; output_orient = -1;
196 data_prologue();
197 for (j = 0; j < abp->nangles; j++) {
198 for (i = 0; i < abp->nangles; i++) {
199 sum = 0; /* average over patches */
200 for (n = npsamps; n-- > 0; ) {
201 bo_getvec(vout, j+(n+frandom())/npsamps, abp);
202 bi_getvec(vin, i+urand(n), abp);
203 ec = SDevalBSDF(&sv, vout, vin, &bsd);
204 if (ec != SDEnone)
205 goto err;
206 sum += sv.cieY;
207 }
208 printf("\t%.3e\n", sum/npsamps);
209 }
210 putchar('\n'); /* extra space between rows */
211 }
212 data_epilogue();
213 }
214 /* front transmission */
215 if (bsd.tf != NULL || bsd.tLamb.cieY > .002) {
216 input_orient = 1; output_orient = -1;
217 data_prologue();
218 for (j = 0; j < abp->nangles; j++) {
219 for (i = 0; i < abp->nangles; i++) {
220 sum = 0; /* average over patches */
221 for (n = npsamps; n-- > 0; ) {
222 bo_getvec(vout, j+(n+frandom())/npsamps, abp);
223 fi_getvec(vin, i+urand(n), abp);
224 ec = SDevalBSDF(&sv, vout, vin, &bsd);
225 if (ec != SDEnone)
226 goto err;
227 sum += sv.cieY;
228 }
229 printf("\t%.3e\n", sum/npsamps);
230 }
231 putchar('\n'); /* extra space between rows */
232 }
233 data_epilogue();
234 }
235 /* back transmission */
236 if ((bsd.tb != NULL) | (bsd.tf != NULL)) {
237 input_orient = -1; output_orient = 1;
238 data_prologue();
239 for (j = 0; j < abp->nangles; j++) {
240 for (i = 0; i < abp->nangles; i++) {
241 sum = 0; /* average over patches */
242 for (n = npsamps; n-- > 0; ) {
243 fo_getvec(vout, j+(n+frandom())/npsamps, abp);
244 bi_getvec(vin, i+urand(n), abp);
245 ec = SDevalBSDF(&sv, vout, vin, &bsd);
246 if (ec != SDEnone)
247 goto err;
248 sum += sv.cieY;
249 }
250 printf("\t%.3e\n", sum/npsamps);
251 }
252 putchar('\n'); /* extra space between rows */
253 }
254 data_epilogue();
255 }
256 SDfreeBSDF(&bsd); /* all done */
257 return;
258 err:
259 SDreportError(ec, stderr);
260 exit(1);
261 }
262
263 /* Interpolate and output a BSDF function using Klems basis */
264 static void
265 eval_function(char *funame)
266 {
267 ANGLE_BASIS *abp = get_basis(kbasis);
268 int assignD = (fundefined(funame) < 6);
269 double iovec[6];
270 double sum;
271 int i, j, n;
272
273 initurand(npsamps);
274 data_prologue(); /* begin output */
275 for (j = 0; j < abp->nangles; j++) { /* run through directions */
276 for (i = 0; i < abp->nangles; i++) {
277 sum = 0;
278 for (n = npsamps; n--; ) { /* average over patches */
279 if (output_orient > 0)
280 fo_getvec(iovec+3, j+(n+frandom())/npsamps, abp);
281 else
282 bo_getvec(iovec+3, j+(n+frandom())/npsamps, abp);
283
284 if (input_orient > 0)
285 fi_getvec(iovec, i+urand(n), abp);
286 else
287 bi_getvec(iovec, i+urand(n), abp);
288
289 if (assignD) {
290 varset("Dx", '=', -iovec[3]);
291 varset("Dy", '=', -iovec[4]);
292 varset("Dz", '=', -iovec[5]);
293 ++eclock;
294 }
295 sum += funvalue(funame, 6, iovec);
296 }
297 printf("\t%.3e\n", sum/npsamps);
298 }
299 putchar('\n');
300 }
301 data_epilogue(); /* finish output */
302 }
303
304 /* Interpolate and output a radial basis function BSDF representation */
305 static void
306 eval_rbf(void)
307 {
308 ANGLE_BASIS *abp = get_basis(kbasis);
309 float bsdfarr[MAXPATCHES*MAXPATCHES];
310 FVECT vin, vout;
311 RBFNODE *rbf;
312 double sum;
313 int i, j, n;
314 /* sanity check */
315 if (abp->nangles > MAXPATCHES) {
316 fprintf(stderr, "%s: too many patches!\n", progname);
317 exit(1);
318 }
319 data_prologue(); /* begin output */
320 for (i = 0; i < abp->nangles; i++) {
321 if (input_orient > 0) /* use incident patch center */
322 fi_getvec(vin, i+.5*(i>0), abp);
323 else
324 bi_getvec(vin, i+.5*(i>0), abp);
325
326 rbf = advect_rbf(vin, lobe_lim); /* compute radial basis func */
327
328 for (j = 0; j < abp->nangles; j++) {
329 sum = 0; /* sample over exiting patch */
330 for (n = npsamps; n--; ) {
331 if (output_orient > 0)
332 fo_getvec(vout, j+(n+frandom())/npsamps, abp);
333 else
334 bo_getvec(vout, j+(n+frandom())/npsamps, abp);
335
336 sum += eval_rbfrep(rbf, vout);
337 }
338 fo_getvec(vout, j+.5, abp); /* use centered secant */
339 bsdfarr[j*abp->nangles + i] = sum / (npsamps*vout[2]);
340 }
341 if (rbf != NULL)
342 free(rbf);
343 }
344 n = 0; /* write out our matrix */
345 for (j = 0; j < abp->nangles; j++) {
346 for (i = 0; i < abp->nangles; i++)
347 printf("\t%.3e\n", bsdfarr[n++]);
348 putchar('\n');
349 }
350 data_epilogue(); /* finish output */
351 }
352
353 /* Read in BSDF and interpolate as Klems matrix representation */
354 int
355 main(int argc, char *argv[])
356 {
357 int dofwd = 0, dobwd = 1;
358 char *cp;
359 int i, na;
360
361 progname = argv[0];
362 esupport |= E_VARIABLE|E_FUNCTION|E_RCONST;
363 esupport &= ~(E_INCHAN|E_OUTCHAN);
364 scompile("PI:3.14159265358979323846", NULL, 0);
365 biggerlib();
366 for (i = 1; i < argc && (argv[i][0] == '-') | (argv[i][0] == '+'); i++)
367 switch (argv[i][1]) { /* get options */
368 case 'n':
369 npsamps = atoi(argv[++i]);
370 if (npsamps <= 0)
371 goto userr;
372 break;
373 case 'e':
374 scompile(argv[++i], NULL, 0);
375 single_plane_incident = 0;
376 break;
377 case 'f':
378 if (!argv[i][2]) {
379 fcompile(argv[++i]);
380 single_plane_incident = 0;
381 } else
382 dofwd = (argv[i][0] == '+');
383 break;
384 case 'b':
385 dobwd = (argv[i][0] == '+');
386 break;
387 case 'h':
388 kbasis = "LBNL/Klems Half";
389 break;
390 case 'q':
391 kbasis = "LBNL/Klems Quarter";
392 break;
393 case 'l':
394 lobe_lim = atoi(argv[++i]);
395 break;
396 default:
397 goto userr;
398 }
399 if (single_plane_incident >= 0) { /* function-based BSDF? */
400 if (i != argc-1 || fundefined(argv[i]) != 6) {
401 fprintf(stderr,
402 "%s: need single function with 6 arguments: bsdf(ix,iy,iz,ox,oy,oz)\n",
403 progname);
404 fprintf(stderr, "\tor 3 arguments using Dx,Dy,Dz: bsdf(ix,iy,iz)\n",
405 progname);
406 goto userr;
407 }
408 ++eclock;
409 xml_header(argc, argv); /* start XML output */
410 xml_prologue(NULL);
411 if (dofwd) {
412 input_orient = -1;
413 output_orient = -1;
414 eval_function(argv[i]); /* outside reflectance */
415 output_orient = 1;
416 eval_function(argv[i]); /* outside -> inside */
417 }
418 if (dobwd) {
419 input_orient = 1;
420 output_orient = 1;
421 eval_function(argv[i]); /* inside reflectance */
422 output_orient = -1;
423 eval_function(argv[i]); /* inside -> outside */
424 }
425 xml_epilogue(); /* finish XML output & exit */
426 return(0);
427 }
428 /* XML input? */
429 if (i == argc-1 && (cp = argv[i]+strlen(argv[i])-4) > argv[i] &&
430 !strcasecmp(cp, ".xml")) {
431 xml_header(argc, argv); /* start XML output */
432 eval_bsdf(argv[i]); /* load & resample BSDF */
433 xml_epilogue(); /* finish XML output & exit */
434 return(0);
435 }
436 if (i < argc) { /* open input files if given */
437 int nbsdf = 0;
438 for ( ; i < argc; i++) { /* interpolate each component */
439 FILE *fpin = fopen(argv[i], "rb");
440 if (fpin == NULL) {
441 fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n",
442 progname, argv[i]);
443 return(1);
444 }
445 if (!load_bsdf_rep(fpin))
446 return(1);
447 fclose(fpin);
448 if (!nbsdf++) { /* start XML on first dist. */
449 xml_header(argc, argv);
450 xml_prologue(NULL);
451 }
452 eval_rbf();
453 }
454 xml_epilogue(); /* finish XML output & exit */
455 return(0);
456 }
457 SET_FILE_BINARY(stdin); /* load from stdin */
458 if (!load_bsdf_rep(stdin))
459 return(1);
460 xml_header(argc, argv); /* start XML output */
461 xml_prologue(NULL);
462 eval_rbf(); /* resample dist. */
463 xml_epilogue(); /* finish XML output & exit */
464 return(0);
465 userr:
466 fprintf(stderr,
467 "Usage: %s [-n spp][-h|-q][-l maxlobes] [bsdf.sir ..] > bsdf.xml\n", progname);
468 fprintf(stderr,
469 " or: %s [-n spp][-h|-q] bsdf_in.xml > bsdf_out.xml\n", progname);
470 fprintf(stderr,
471 " or: %s [-n spp][-h|-q][{+|-}for[ward]][{+|-}b[ackward]][-e expr][-f file] bsdf_func > bsdf.xml\n",
472 progname);
473 return(1);
474 }