ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/cv/bsdf2klems.c
Revision: 2.10
Committed: Thu Sep 26 17:05:00 2013 UTC (10 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +8 -3 lines
Log Message:
Added -l option to limit maximum number of RBF lobes for interpolation

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf2klems.c,v 2.9 2013/08/11 14:32:34 greg Exp $";
3 #endif
4 /*
5 * Load measured BSDF interpolant and write out as XML file with Klems matrix.
6 *
7 * G. Ward
8 */
9
10 #define _USE_MATH_DEFINES
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <math.h>
15 #include "random.h"
16 #include "platform.h"
17 #include "calcomp.h"
18 #include "bsdfrep.h"
19 #include "bsdf_m.h"
20 /* assumed maximum # Klems patches */
21 #define MAXPATCHES 145
22 /* global argv[0] */
23 char *progname;
24 /* selected basis function name */
25 static const char *kbasis = "LBNL/Klems Full";
26 /* number of BSDF samples per patch */
27 static int npsamps = 256;
28 /* limit on number of RBF lobes */
29 static int lobe_lim = 15000;
30
31 /* Return angle basis corresponding to the given name */
32 ANGLE_BASIS *
33 get_basis(const char *bn)
34 {
35 int n = nabases;
36
37 while (n-- > 0)
38 if (!strcasecmp(bn, abase_list[n].name))
39 return &abase_list[n];
40 return NULL;
41 }
42
43 /* Output XML header to stdout */
44 static void
45 xml_header(int ac, char *av[])
46 {
47 puts("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
48 puts("<WindowElement xmlns=\"http://windows.lbl.gov\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:schemaLocation=\"http://windows.lbl.gov/BSDF-v1.4.xsd\">");
49 fputs("<!-- File produced by:", stdout);
50 while (ac-- > 0) {
51 fputc(' ', stdout);
52 fputs(*av++, stdout);
53 }
54 puts(" -->");
55 }
56
57 /* Output XML prologue to stdout */
58 static void
59 xml_prologue(const SDData *sd)
60 {
61 const char *matn = (sd && sd->matn[0]) ? sd->matn : "Name";
62 const char *makr = (sd && sd->makr[0]) ? sd->makr : "Manufacturer";
63 ANGLE_BASIS *abp = get_basis(kbasis);
64 int i;
65
66 if (abp == NULL) {
67 fprintf(stderr, "%s: unknown angle basis '%s'\n", progname, kbasis);
68 exit(1);
69 }
70 puts("<WindowElementType>System</WindowElementType>");
71 puts("<FileType>BSDF</FileType>");
72 puts("<Optical>");
73 puts("<Layer>");
74 puts("\t<Material>");
75 printf("\t\t<Name>%s</Name>\n", matn);
76 printf("\t\t<Manufacturer>%s</Manufacturer>\n", makr);
77 if (sd && sd->dim[2] > .001) {
78 printf("\t\t<Thickness unit=\"meter\">%.3f</Thickness>\n", sd->dim[2]);
79 printf("\t\t<Width unit=\"meter\">%.3f</Width>\n", sd->dim[0]);
80 printf("\t\t<Height unit=\"meter\">%.3f</Height>\n", sd->dim[1]);
81 }
82 puts("\t\t<DeviceType>Other</DeviceType>");
83 puts("\t</Material>");
84 if (sd && sd->mgf != NULL) {
85 puts("\t<Geometry format=\"MGF\">");
86 puts("\t\t<MGFblock unit=\"meter\">");
87 fputs(sd->mgf, stdout);
88 puts("</MGFblock>");
89 puts("\t</Geometry>");
90 }
91 puts("\t<DataDefinition>");
92 puts("\t\t<IncidentDataStructure>Columns</IncidentDataStructure>");
93 puts("\t\t<AngleBasis>");
94 printf("\t\t\t<AngleBasisName>%s</AngleBasisName>\n", kbasis);
95 for (i = 0; abp->lat[i].nphis; i++) {
96 puts("\t\t\t<AngleBasisBlock>");
97 printf("\t\t\t<Theta>%g</Theta>\n", i ?
98 .5*(abp->lat[i].tmin + abp->lat[i+1].tmin) :
99 .0 );
100 printf("\t\t\t<nPhis>%d</nPhis>\n", abp->lat[i].nphis);
101 puts("\t\t\t<ThetaBounds>");
102 printf("\t\t\t\t<LowerTheta>%g</LowerTheta>\n", abp->lat[i].tmin);
103 printf("\t\t\t\t<UpperTheta>%g</UpperTheta>\n", abp->lat[i+1].tmin);
104 puts("\t\t\t</ThetaBounds>");
105 puts("\t\t\t</AngleBasisBlock>");
106 }
107 puts("\t\t</AngleBasis>");
108 puts("\t</DataDefinition>");
109 }
110
111 /* Output XML data prologue to stdout */
112 static void
113 data_prologue()
114 {
115 static const char *bsdf_type[4] = {
116 "Reflection Front",
117 "Transmission Front",
118 "Transmission Back",
119 "Reflection Back"
120 };
121
122 puts("\t<WavelengthData>");
123 puts("\t\t<LayerNumber>System</LayerNumber>");
124 puts("\t\t<Wavelength unit=\"Integral\">Visible</Wavelength>");
125 puts("\t\t<SourceSpectrum>CIE Illuminant D65 1nm.ssp</SourceSpectrum>");
126 puts("\t\t<DetectorSpectrum>ASTM E308 1931 Y.dsp</DetectorSpectrum>");
127 puts("\t\t<WavelengthDataBlock>");
128 printf("\t\t\t<WavelengthDataDirection>%s</WavelengthDataDirection>\n",
129 bsdf_type[(input_orient>0)<<1 | (output_orient>0)]);
130 printf("\t\t\t<ColumnAngleBasis>%s</ColumnAngleBasis>\n", kbasis);
131 printf("\t\t\t<RowAngleBasis>%s</RowAngleBasis>\n", kbasis);
132 puts("\t\t\t<ScatteringDataType>BTDF</ScatteringDataType>");
133 puts("\t\t\t<ScatteringData>");
134 }
135
136 /* Output XML data epilogue to stdout */
137 static void
138 data_epilogue(void)
139 {
140 puts("\t\t\t</ScatteringData>");
141 puts("\t\t</WavelengthDataBlock>");
142 puts("\t</WavelengthData>");
143 }
144
145 /* Output XML epilogue to stdout */
146 static void
147 xml_epilogue(void)
148 {
149 puts("</Layer>");
150 puts("</Optical>");
151 puts("</WindowElement>");
152 }
153
154 /* Load and resample XML BSDF description using Klems basis */
155 static void
156 eval_bsdf(const char *fname)
157 {
158 ANGLE_BASIS *abp = get_basis(kbasis);
159 SDData bsd;
160 SDError ec;
161 FVECT vin, vout;
162 SDValue sv;
163 double sum;
164 int i, j, n;
165
166 SDclearBSDF(&bsd, fname); /* load BSDF file */
167 if ((ec = SDloadFile(&bsd, fname)) != SDEnone)
168 goto err;
169 xml_prologue(&bsd); /* pass geometry */
170 /* front reflection */
171 if (bsd.rf != NULL || bsd.rLambFront.cieY > .002) {
172 input_orient = 1; output_orient = 1;
173 data_prologue();
174 for (j = 0; j < abp->nangles; j++) {
175 for (i = 0; i < abp->nangles; i++) {
176 sum = 0; /* average over patches */
177 for (n = npsamps; n-- > 0; ) {
178 fo_getvec(vout, j+(n+frandom())/npsamps, abp);
179 fi_getvec(vin, i+urand(n), abp);
180 ec = SDevalBSDF(&sv, vout, vin, &bsd);
181 if (ec != SDEnone)
182 goto err;
183 sum += sv.cieY;
184 }
185 printf("\t%.3e\n", sum/npsamps);
186 }
187 putchar('\n'); /* extra space between rows */
188 }
189 data_epilogue();
190 }
191 /* back reflection */
192 if (bsd.rb != NULL || bsd.rLambBack.cieY > .002) {
193 input_orient = -1; output_orient = -1;
194 data_prologue();
195 for (j = 0; j < abp->nangles; j++) {
196 for (i = 0; i < abp->nangles; i++) {
197 sum = 0; /* average over patches */
198 for (n = npsamps; n-- > 0; ) {
199 bo_getvec(vout, j+(n+frandom())/npsamps, abp);
200 bi_getvec(vin, i+urand(n), abp);
201 ec = SDevalBSDF(&sv, vout, vin, &bsd);
202 if (ec != SDEnone)
203 goto err;
204 sum += sv.cieY;
205 }
206 printf("\t%.3e\n", sum/npsamps);
207 }
208 putchar('\n'); /* extra space between rows */
209 }
210 data_epilogue();
211 }
212 /* front transmission */
213 if (bsd.tf != NULL || bsd.tLamb.cieY > .002) {
214 input_orient = 1; output_orient = -1;
215 data_prologue();
216 for (j = 0; j < abp->nangles; j++) {
217 for (i = 0; i < abp->nangles; i++) {
218 sum = 0; /* average over patches */
219 for (n = npsamps; n-- > 0; ) {
220 bo_getvec(vout, j+(n+frandom())/npsamps, abp);
221 fi_getvec(vin, i+urand(n), abp);
222 ec = SDevalBSDF(&sv, vout, vin, &bsd);
223 if (ec != SDEnone)
224 goto err;
225 sum += sv.cieY;
226 }
227 printf("\t%.3e\n", sum/npsamps);
228 }
229 putchar('\n'); /* extra space between rows */
230 }
231 data_epilogue();
232 }
233 /* back transmission */
234 if ((bsd.tb != NULL) | (bsd.tf != NULL)) {
235 input_orient = -1; output_orient = 1;
236 data_prologue();
237 for (j = 0; j < abp->nangles; j++) {
238 for (i = 0; i < abp->nangles; i++) {
239 sum = 0; /* average over patches */
240 for (n = npsamps; n-- > 0; ) {
241 fo_getvec(vout, j+(n+frandom())/npsamps, abp);
242 bi_getvec(vin, i+urand(n), abp);
243 ec = SDevalBSDF(&sv, vout, vin, &bsd);
244 if (ec != SDEnone)
245 goto err;
246 sum += sv.cieY;
247 }
248 printf("\t%.3e\n", sum/npsamps);
249 }
250 putchar('\n'); /* extra space between rows */
251 }
252 data_epilogue();
253 }
254 SDfreeBSDF(&bsd); /* all done */
255 return;
256 err:
257 SDreportError(ec, stderr);
258 exit(1);
259 }
260
261 /* Interpolate and output a BSDF function using Klems basis */
262 static void
263 eval_function(char *funame)
264 {
265 ANGLE_BASIS *abp = get_basis(kbasis);
266 int assignD = (fundefined(funame) < 6);
267 double iovec[6];
268 double sum;
269 int i, j, n;
270
271 initurand(npsamps);
272 data_prologue(); /* begin output */
273 for (j = 0; j < abp->nangles; j++) { /* run through directions */
274 for (i = 0; i < abp->nangles; i++) {
275 sum = 0;
276 for (n = npsamps; n--; ) { /* average over patches */
277 if (output_orient > 0)
278 fo_getvec(iovec+3, j+(n+frandom())/npsamps, abp);
279 else
280 bo_getvec(iovec+3, j+(n+frandom())/npsamps, abp);
281
282 if (input_orient > 0)
283 fi_getvec(iovec, i+urand(n), abp);
284 else
285 bi_getvec(iovec, i+urand(n), abp);
286
287 if (assignD) {
288 varset("Dx", '=', -iovec[3]);
289 varset("Dy", '=', -iovec[4]);
290 varset("Dz", '=', -iovec[5]);
291 ++eclock;
292 }
293 sum += funvalue(funame, 6, iovec);
294 }
295 printf("\t%.3e\n", sum/npsamps);
296 }
297 putchar('\n');
298 }
299 data_epilogue(); /* finish output */
300 }
301
302 /* Interpolate and output a radial basis function BSDF representation */
303 static void
304 eval_rbf(void)
305 {
306 ANGLE_BASIS *abp = get_basis(kbasis);
307 float bsdfarr[MAXPATCHES*MAXPATCHES];
308 FVECT vin, vout;
309 RBFNODE *rbf;
310 double sum;
311 int i, j, n;
312 /* sanity check */
313 if (abp->nangles > MAXPATCHES) {
314 fprintf(stderr, "%s: too many patches!\n", progname);
315 exit(1);
316 }
317 data_prologue(); /* begin output */
318 for (i = 0; i < abp->nangles; i++) {
319 if (input_orient > 0) /* use incident patch center */
320 fi_getvec(vin, i+.5*(i>0), abp);
321 else
322 bi_getvec(vin, i+.5*(i>0), abp);
323
324 rbf = advect_rbf(vin, lobe_lim); /* compute radial basis func */
325
326 for (j = 0; j < abp->nangles; j++) {
327 sum = 0; /* sample over exiting patch */
328 for (n = npsamps; n--; ) {
329 if (output_orient > 0)
330 fo_getvec(vout, j+(n+frandom())/npsamps, abp);
331 else
332 bo_getvec(vout, j+(n+frandom())/npsamps, abp);
333
334 sum += eval_rbfrep(rbf, vout) / vout[2];
335 }
336 bsdfarr[j*abp->nangles + i] = sum*output_orient/npsamps;
337 }
338 if (rbf != NULL)
339 free(rbf);
340 }
341 n = 0; /* write out our matrix */
342 for (j = 0; j < abp->nangles; j++) {
343 for (i = 0; i < abp->nangles; i++)
344 printf("\t%.3e\n", bsdfarr[n++]);
345 putchar('\n');
346 }
347 data_epilogue(); /* finish output */
348 }
349
350 /* Read in BSDF and interpolate as Klems matrix representation */
351 int
352 main(int argc, char *argv[])
353 {
354 int dofwd = 0, dobwd = 1;
355 char *cp;
356 int i, na;
357
358 progname = argv[0];
359 esupport |= E_VARIABLE|E_FUNCTION|E_RCONST;
360 esupport &= ~(E_INCHAN|E_OUTCHAN);
361 scompile("PI:3.14159265358979323846", NULL, 0);
362 biggerlib();
363 for (i = 1; i < argc && (argv[i][0] == '-') | (argv[i][0] == '+'); i++)
364 switch (argv[i][1]) { /* get options */
365 case 'n':
366 npsamps = atoi(argv[++i]);
367 if (npsamps <= 0)
368 goto userr;
369 break;
370 case 'e':
371 scompile(argv[++i], NULL, 0);
372 single_plane_incident = 0;
373 break;
374 case 'f':
375 if (!argv[i][2]) {
376 fcompile(argv[++i]);
377 single_plane_incident = 0;
378 } else
379 dofwd = (argv[i][0] == '+');
380 break;
381 case 'b':
382 dobwd = (argv[i][0] == '+');
383 break;
384 case 'h':
385 kbasis = "LBNL/Klems Half";
386 break;
387 case 'q':
388 kbasis = "LBNL/Klems Quarter";
389 break;
390 case 'l':
391 lobe_lim = atoi(argv[++i]);
392 break;
393 default:
394 goto userr;
395 }
396 if (single_plane_incident >= 0) { /* function-based BSDF? */
397 if (i != argc-1 || fundefined(argv[i]) != 6) {
398 fprintf(stderr,
399 "%s: need single function with 6 arguments: bsdf(ix,iy,iz,ox,oy,oz)\n",
400 progname);
401 fprintf(stderr, "\tor 3 arguments using Dx,Dy,Dz: bsdf(ix,iy,iz)\n",
402 progname);
403 goto userr;
404 }
405 ++eclock;
406 xml_header(argc, argv); /* start XML output */
407 xml_prologue(NULL);
408 if (dofwd) {
409 input_orient = -1;
410 output_orient = -1;
411 eval_function(argv[i]); /* outside reflectance */
412 output_orient = 1;
413 eval_function(argv[i]); /* outside -> inside */
414 }
415 if (dobwd) {
416 input_orient = 1;
417 output_orient = 1;
418 eval_function(argv[i]); /* inside reflectance */
419 output_orient = -1;
420 eval_function(argv[i]); /* inside -> outside */
421 }
422 xml_epilogue(); /* finish XML output & exit */
423 return(0);
424 }
425 /* XML input? */
426 if (i == argc-1 && (cp = argv[i]+strlen(argv[i])-4) > argv[i] &&
427 !strcasecmp(cp, ".xml")) {
428 xml_header(argc, argv); /* start XML output */
429 eval_bsdf(argv[i]); /* load & resample BSDF */
430 xml_epilogue(); /* finish XML output & exit */
431 return(0);
432 }
433 if (i < argc) { /* open input files if given */
434 int nbsdf = 0;
435 for ( ; i < argc; i++) { /* interpolate each component */
436 FILE *fpin = fopen(argv[i], "rb");
437 if (fpin == NULL) {
438 fprintf(stderr, "%s: cannot open BSDF interpolant '%s'\n",
439 progname, argv[i]);
440 return(1);
441 }
442 if (!load_bsdf_rep(fpin))
443 return(1);
444 fclose(fpin);
445 if (!nbsdf++) { /* start XML on first dist. */
446 xml_header(argc, argv);
447 xml_prologue(NULL);
448 }
449 eval_rbf();
450 }
451 xml_epilogue(); /* finish XML output & exit */
452 return(0);
453 }
454 SET_FILE_BINARY(stdin); /* load from stdin */
455 if (!load_bsdf_rep(stdin))
456 return(1);
457 xml_header(argc, argv); /* start XML output */
458 xml_prologue(NULL);
459 eval_rbf(); /* resample dist. */
460 xml_epilogue(); /* finish XML output & exit */
461 return(0);
462 userr:
463 fprintf(stderr,
464 "Usage: %s [-n spp][-h|-q][-l maxlobes] [bsdf.sir ..] > bsdf.xml\n", progname);
465 fprintf(stderr,
466 " or: %s [-n spp][-h|-q] bsdf_in.xml > bsdf_out.xml\n", progname);
467 fprintf(stderr,
468 " or: %s [-n spp][-h|-q][{+|-}for[ward]][{+|-}b[ackward]][-e expr][-f file] bsdf_func > bsdf.xml\n",
469 progname);
470 return(1);
471 }