8 |
|
*/ |
9 |
|
|
10 |
|
#define _USE_MATH_DEFINES |
11 |
– |
#include <stdio.h> |
11 |
|
#include <stdlib.h> |
13 |
– |
#include <string.h> |
12 |
|
#include <math.h> |
13 |
|
#include "random.h" |
14 |
|
#include "platform.h" |
29 |
|
static const char klems_quarter[] = "LBNL/Klems Quarter"; |
30 |
|
static const char *kbasis = klems_full; |
31 |
|
/* number of BSDF samples per patch */ |
32 |
< |
static int npsamps = 256; |
32 |
> |
static int npsamps = 1024; |
33 |
|
/* limit on number of RBF lobes */ |
34 |
|
static int lobe_lim = 15000; |
35 |
|
/* progress bar length */ |
429 |
|
static void |
430 |
|
eval_rbf(void) |
431 |
|
{ |
432 |
< |
ANGLE_BASIS *abp = get_basis(kbasis); |
433 |
< |
float (*XZarr)[2] = NULL; |
434 |
< |
float bsdfarr[MAXPATCHES*MAXPATCHES]; |
435 |
< |
FILE *cfp[3]; |
436 |
< |
FVECT vin, vout; |
437 |
< |
double sum, xsum, ysum; |
438 |
< |
int i, j, n; |
439 |
< |
/* sanity check */ |
440 |
< |
if (abp->nangles > MAXPATCHES) { |
441 |
< |
fprintf(stderr, "%s: too many patches!\n", progname); |
442 |
< |
exit(1); |
443 |
< |
} |
444 |
< |
if (rbf_colorimetry == RBCtristimulus) |
445 |
< |
XZarr = (float (*)[2])malloc(sizeof(float)*2*abp->nangles*abp->nangles); |
446 |
< |
for (i = 0; i < abp->nangles; i++) { |
447 |
< |
RBFNODE *rbf; |
448 |
< |
if (input_orient > 0) /* use incident patch center */ |
449 |
< |
fi_getvec(vin, i+.5*(i>0), abp); |
450 |
< |
else |
451 |
< |
bi_getvec(vin, i+.5*(i>0), abp); |
432 |
> |
ANGLE_BASIS *abp = get_basis(kbasis); |
433 |
> |
float (*XZarr)[2] = NULL; |
434 |
> |
float bsdfarr[MAXPATCHES*MAXPATCHES]; |
435 |
> |
FILE *cfp[3]; |
436 |
> |
FVECT vin, vout; |
437 |
> |
double sum, xsum, ysum, normf; |
438 |
> |
int i, j, ni, no, nisamps, nosamps; |
439 |
> |
/* sanity check */ |
440 |
> |
if (abp->nangles > MAXPATCHES) { |
441 |
> |
fprintf(stderr, "%s: too many patches!\n", progname); |
442 |
> |
exit(1); |
443 |
> |
} |
444 |
> |
memset(bsdfarr, 0, sizeof(bsdfarr)); |
445 |
> |
if (rbf_colorimetry == RBCtristimulus) |
446 |
> |
XZarr = (float (*)[2])calloc(abp->nangles*abp->nangles, 2*sizeof(float)); |
447 |
> |
nosamps = (int)(pow((double)npsamps, 0.67) + .5); |
448 |
> |
nisamps = (npsamps + (nosamps>>1)) / nosamps; |
449 |
> |
normf = 1./(double)(nisamps*nosamps); |
450 |
> |
for (i = 0; i < abp->nangles; i++) { |
451 |
> |
for (ni = nisamps; ni--; ) { /* sample over incident patch */ |
452 |
> |
RBFNODE *rbf; |
453 |
> |
if (input_orient > 0) /* vary incident patch loc. */ |
454 |
> |
fi_getvec(vin, i+urand(ni), abp); |
455 |
> |
else |
456 |
> |
bi_getvec(vin, i+urand(ni), abp); |
457 |
|
|
458 |
< |
rbf = advect_rbf(vin, lobe_lim); /* compute radial basis func */ |
458 |
> |
rbf = advect_rbf(vin, lobe_lim); /* compute radial basis func */ |
459 |
|
|
460 |
< |
for (j = 0; j < abp->nangles; j++) { |
461 |
< |
sum = 0; /* sample over exiting patch */ |
460 |
> |
for (j = 0; j < abp->nangles; j++) { |
461 |
> |
sum = 0; /* sample over exiting patch */ |
462 |
|
xsum = ysum = 0; |
463 |
< |
for (n = npsamps; n--; ) { |
463 |
> |
for (no = nosamps; no--; ) { |
464 |
|
SDValue sdv; |
465 |
|
if (output_orient > 0) |
466 |
< |
fo_getvec(vout, j+(n+frandom())/npsamps, abp); |
466 |
> |
fo_getvec(vout, j+(no+frandom())/nosamps, abp); |
467 |
|
else |
468 |
< |
bo_getvec(vout, j+(n+frandom())/npsamps, abp); |
468 |
> |
bo_getvec(vout, j+(no+frandom())/nosamps, abp); |
469 |
|
|
470 |
|
eval_rbfcol(&sdv, rbf, vout); |
471 |
|
sum += sdv.cieY; |
472 |
|
if (rbf_colorimetry == RBCtristimulus) { |
473 |
|
xsum += sdv.cieY * sdv.spec.cx; |
474 |
|
ysum += sdv.cieY * sdv.spec.cy; |
475 |
< |
} |
475 |
> |
} |
476 |
|
} |
477 |
< |
n = j*abp->nangles + i; |
478 |
< |
bsdfarr[n] = sum / npsamps; |
477 |
> |
no = j*abp->nangles + i; |
478 |
> |
bsdfarr[no] += sum * normf; |
479 |
|
if (rbf_colorimetry == RBCtristimulus) { |
480 |
< |
XZarr[n][0] = xsum*sum/(npsamps*ysum); |
481 |
< |
XZarr[n][1] = (sum - xsum - ysum)*sum/(npsamps*ysum); |
480 |
> |
XZarr[no][0] += xsum*sum*normf/ysum; |
481 |
> |
XZarr[no][1] += (sum - xsum - ysum)*sum*normf/ysum; |
482 |
|
} |
483 |
|
} |
484 |
< |
if (rbf != NULL) |
484 |
> |
if (rbf != NULL) |
485 |
|
free(rbf); |
483 |
– |
prog_show((i+1.)/abp->nangles); |
486 |
|
} |
487 |
< |
/* write out our matrix */ |
488 |
< |
cfp[CIE_Y] = open_component_file(CIE_Y); |
489 |
< |
n = 0; |
490 |
< |
for (j = 0; j < abp->nangles; j++) { |
491 |
< |
for (i = 0; i < abp->nangles; i++, n++) |
492 |
< |
fprintf(cfp[CIE_Y], "\t%.3e\n", bsdfarr[n]); |
493 |
< |
fputc('\n', cfp[CIE_Y]); |
494 |
< |
} |
495 |
< |
prog_done(); |
496 |
< |
if (fclose(cfp[CIE_Y])) { |
497 |
< |
fprintf(stderr, "%s: error writing Y output\n", progname); |
498 |
< |
exit(1); |
499 |
< |
} |
500 |
< |
if (XZarr == NULL) /* no color? */ |
501 |
< |
return; |
502 |
< |
cfp[CIE_X] = open_component_file(CIE_X); |
503 |
< |
cfp[CIE_Z] = open_component_file(CIE_Z); |
504 |
< |
n = 0; |
505 |
< |
for (j = 0; j < abp->nangles; j++) { |
506 |
< |
for (i = 0; i < abp->nangles; i++, n++) { |
507 |
< |
fprintf(cfp[CIE_X], "\t%.3e\n", XZarr[n][0]); |
508 |
< |
fprintf(cfp[CIE_Z], "\t%.3e\n", XZarr[n][1]); |
509 |
< |
} |
510 |
< |
fputc('\n', cfp[CIE_X]); |
511 |
< |
fputc('\n', cfp[CIE_Z]); |
512 |
< |
} |
513 |
< |
free(XZarr); |
514 |
< |
if (fclose(cfp[CIE_X]) || fclose(cfp[CIE_Z])) { |
515 |
< |
fprintf(stderr, "%s: error writing X/Z output\n", progname); |
516 |
< |
exit(1); |
517 |
< |
} |
487 |
> |
prog_show((i+1.)/abp->nangles); |
488 |
> |
} |
489 |
> |
/* write out our matrix */ |
490 |
> |
cfp[CIE_Y] = open_component_file(CIE_Y); |
491 |
> |
no = 0; |
492 |
> |
for (j = 0; j < abp->nangles; j++) { |
493 |
> |
for (i = 0; i < abp->nangles; i++, no++) |
494 |
> |
fprintf(cfp[CIE_Y], "\t%.3e\n", bsdfarr[no]); |
495 |
> |
fputc('\n', cfp[CIE_Y]); |
496 |
> |
} |
497 |
> |
prog_done(); |
498 |
> |
if (fclose(cfp[CIE_Y])) { |
499 |
> |
fprintf(stderr, "%s: error writing Y output\n", progname); |
500 |
> |
exit(1); |
501 |
> |
} |
502 |
> |
if (XZarr == NULL) /* no color? */ |
503 |
> |
return; |
504 |
> |
cfp[CIE_X] = open_component_file(CIE_X); |
505 |
> |
cfp[CIE_Z] = open_component_file(CIE_Z); |
506 |
> |
no = 0; |
507 |
> |
for (j = 0; j < abp->nangles; j++) { |
508 |
> |
for (i = 0; i < abp->nangles; i++, no++) { |
509 |
> |
fprintf(cfp[CIE_X], "\t%.3e\n", XZarr[no][0]); |
510 |
> |
fprintf(cfp[CIE_Z], "\t%.3e\n", XZarr[no][1]); |
511 |
> |
} |
512 |
> |
fputc('\n', cfp[CIE_X]); |
513 |
> |
fputc('\n', cfp[CIE_Z]); |
514 |
> |
} |
515 |
> |
free(XZarr); |
516 |
> |
if (fclose(cfp[CIE_X]) || fclose(cfp[CIE_Z])) { |
517 |
> |
fprintf(stderr, "%s: error writing X/Z output\n", progname); |
518 |
> |
exit(1); |
519 |
> |
} |
520 |
|
} |
521 |
|
|
522 |
|
#if defined(_WIN32) || defined(_WIN64) |