#ifndef lint static const char RCSid[] = "$Id: tmesh.c,v 2.3 2003/06/26 00:58:09 schorsch Exp $"; #endif /* * Compute and print barycentric coordinates for triangle meshes */ #include #include "fvect.h" #include "tmesh.h" #define ABS(x) ((x) >= 0 ? (x) : -(x)) int flat_tri(v1, v2, v3, n1, n2, n3) /* determine if triangle is flat */ FVECT v1, v2, v3, n1, n2, n3; { double d1, d2, d3; FVECT vt1, vt2, vn; /* compute default normal */ VSUB(vt1, v2, v1); VSUB(vt2, v3, v2); VCROSS(vn, vt1, vt2); if (normalize(vn) == 0.0) return(DEGEN); /* compare to supplied normals */ d1 = DOT(vn, n1); d2 = DOT(vn, n2); d3 = DOT(vn, n3); if (d1 < 0 && d2 < 0 && d3 < 0) { if (d1 > -COSTOL || d2 > -COSTOL || d3 > -COSTOL) return(RVBENT); return(RVFLAT); } if (d1 < COSTOL || d2 < COSTOL || d3 < COSTOL) return(ISBENT); return(ISFLAT); } int comp_baryc(bcm, v1, v2, v3) /* compute barycentric vectors */ register BARYCCM *bcm; RREAL *v1, *v2, *v3; { RREAL *vt; FVECT va, vab, vcb; double d; int ax0, ax1; register int i; /* compute major axis */ VSUB(vab, v1, v2); VSUB(vcb, v3, v2); VCROSS(va, vab, vcb); bcm->ax = ABS(va[0]) > ABS(va[1]) ? 0 : 1; bcm->ax = ABS(va[bcm->ax]) > ABS(va[2]) ? bcm->ax : 2; ax0 = (bcm->ax + 1) % 3; ax1 = (bcm->ax + 2) % 3; for (i = 0; i < 2; i++) { vab[0] = v1[ax0] - v2[ax0]; vcb[0] = v3[ax0] - v2[ax0]; vab[1] = v1[ax1] - v2[ax1]; vcb[1] = v3[ax1] - v2[ax1]; d = vcb[0]*vcb[0] + vcb[1]*vcb[1]; if (d <= FTINY*FTINY) return(-1); d = (vcb[0]*vab[0]+vcb[1]*vab[1])/d; va[0] = vab[0] - vcb[0]*d; va[1] = vab[1] - vcb[1]*d; d = va[0]*va[0] + va[1]*va[1]; if (d <= FTINY*FTINY) return(-1); d = 1.0/d; bcm->tm[i][0] = va[0] *= d; bcm->tm[i][1] = va[1] *= d; bcm->tm[i][2] = -(v2[ax0]*va[0]+v2[ax1]*va[1]); /* rotate vertices */ vt = v1; v1 = v2; v2 = v3; v3 = vt; } return(0); } void eval_baryc(wt, p, bcm) /* evaluate barycentric weights at p */ RREAL wt[3]; FVECT p; register BARYCCM *bcm; { double u, v; u = p[(bcm->ax + 1) % 3]; v = p[(bcm->ax + 2) % 3]; wt[0] = u*bcm->tm[0][0] + v*bcm->tm[0][1] + bcm->tm[0][2]; wt[1] = u*bcm->tm[1][0] + v*bcm->tm[1][1] + bcm->tm[1][2]; wt[2] = 1. - wt[1] - wt[0]; } int get_baryc(wt, p, v1, v2, v3) /* compute barycentric weights at p */ RREAL wt[3]; FVECT p; FVECT v1, v2, v3; { BARYCCM bcm; if (comp_baryc(&bcm, v1, v2, v3) < 0) return(-1); eval_baryc(wt, p, &bcm); return(0); } #if 0 int get_baryc(wt, p, v1, v2, v3) /* compute barycentric weights at p */ RREAL wt[3]; FVECT p; FVECT v1, v2, v3; { FVECT ac, bc, pc, cros; double normf; /* area formula w/o 2-D optimization */ VSUB(ac, v1, v3); VSUB(bc, v2, v3); VSUB(pc, p, v3); VCROSS(cros, ac, bc); normf = DOT(cros,cros) if (normf <= 0.0) return(-1); normf = 1./sqrt(normf); VCROSS(cros, bc, pc); wt[0] = VLEN(cros) * normf; VCROSS(cros, ac, pc); wt[1] = VLEN(cros) * normf; wt[2] = 1. - wt[1] - wt[0]; return(0); } #endif void put_baryc(bcm, com, n) /* put barycentric coord. vectors */ register BARYCCM *bcm; register RREAL com[][3]; int n; { double a, b; register int i, j; printf("%d\t%d\n", 1+3*n, bcm->ax); for (i = 0; i < n; i++) { a = com[i][0] - com[i][2]; b = com[i][1] - com[i][2]; printf("%14.8f %14.8f %14.8f\n", bcm->tm[0][0]*a + bcm->tm[1][0]*b, bcm->tm[0][1]*a + bcm->tm[1][1]*b, bcm->tm[0][2]*a + bcm->tm[1][2]*b + com[i][2]); } }