| 21 |
|
double d1, d2, d3; |
| 22 |
|
FVECT vt1, vt2, vn; |
| 23 |
|
/* compute default normal */ |
| 24 |
< |
vt1[0] = v2[0] - v1[0]; vt1[1] = v2[1] - v1[1]; vt1[2] = v2[2] - v1[2]; |
| 25 |
< |
vt2[0] = v3[0] - v2[0]; vt2[1] = v3[1] - v2[1]; vt2[2] = v3[2] - v2[2]; |
| 26 |
< |
fcross(vn, vt1, vt2); |
| 24 |
> |
VSUB(vt1, v2, v1); |
| 25 |
> |
VSUB(vt2, v3, v2); |
| 26 |
> |
VCROSS(vn, vt1, vt2); |
| 27 |
|
if (normalize(vn) == 0.0) |
| 28 |
|
return(DEGEN); |
| 29 |
|
/* compare to supplied normals */ |
| 42 |
|
int |
| 43 |
|
comp_baryc(bcm, v1, v2, v3) /* compute barycentric vectors */ |
| 44 |
|
register BARYCCM *bcm; |
| 45 |
< |
FLOAT *v1, *v2, *v3; |
| 45 |
> |
FLOAT *v1, *v2, *v3; |
| 46 |
|
{ |
| 47 |
|
FLOAT *vt; |
| 48 |
|
FVECT va, vab, vcb; |
| 50 |
|
int ax0, ax1; |
| 51 |
|
register int i; |
| 52 |
|
/* compute major axis */ |
| 53 |
< |
for (i = 0; i < 3; i++) { |
| 54 |
< |
vab[i] = v1[i] - v2[i]; |
| 55 |
< |
vcb[i] = v3[i] - v2[i]; |
| 56 |
< |
} |
| 57 |
< |
fcross(va, vab, vcb); |
| 53 |
> |
VSUB(vab, v1, v2); |
| 54 |
> |
VSUB(vcb, v3, v2); |
| 55 |
> |
VCROSS(va, vab, vcb); |
| 56 |
|
bcm->ax = ABS(va[0]) > ABS(va[1]) ? 0 : 1; |
| 57 |
|
bcm->ax = ABS(va[bcm->ax]) > ABS(va[2]) ? bcm->ax : 2; |
| 58 |
|
ax0 = (bcm->ax + 1) % 3; |
| 85 |
|
} |
| 86 |
|
|
| 87 |
|
|
| 88 |
< |
put_baryc(bcm, com, n) /* put barycentric coord. vectors */ |
| 88 |
> |
void |
| 89 |
> |
eval_baryc(wt, p, bcm) /* evaluate barycentric weights at p */ |
| 90 |
> |
FLOAT wt[3]; |
| 91 |
> |
FVECT p; |
| 92 |
|
register BARYCCM *bcm; |
| 93 |
< |
register FLOAT com[][3]; |
| 94 |
< |
int n; |
| 93 |
> |
{ |
| 94 |
> |
double u, v; |
| 95 |
> |
|
| 96 |
> |
u = p[(bcm->ax + 1) % 3]; |
| 97 |
> |
v = p[(bcm->ax + 2) % 3]; |
| 98 |
> |
wt[0] = u*bcm->tm[0][0] + v*bcm->tm[0][1] + bcm->tm[0][2]; |
| 99 |
> |
wt[1] = u*bcm->tm[1][0] + v*bcm->tm[1][1] + bcm->tm[1][2]; |
| 100 |
> |
wt[2] = 1. - wt[1] - wt[0]; |
| 101 |
> |
} |
| 102 |
> |
|
| 103 |
> |
|
| 104 |
> |
int |
| 105 |
> |
get_baryc(wt, p, v1, v2, v3) /* compute barycentric weights at p */ |
| 106 |
> |
FLOAT wt[3]; |
| 107 |
> |
FVECT p; |
| 108 |
> |
FVECT v1, v2, v3; |
| 109 |
> |
{ |
| 110 |
> |
BARYCCM bcm; |
| 111 |
> |
|
| 112 |
> |
if (comp_baryc(&bcm, v1, v2, v3) < 0) |
| 113 |
> |
return(-1); |
| 114 |
> |
eval_baryc(wt, p, &bcm); |
| 115 |
> |
return(0); |
| 116 |
> |
} |
| 117 |
> |
|
| 118 |
> |
|
| 119 |
> |
#if 0 |
| 120 |
> |
int |
| 121 |
> |
get_baryc(wt, p, v1, v2, v3) /* compute barycentric weights at p */ |
| 122 |
> |
FLOAT wt[3]; |
| 123 |
> |
FVECT p; |
| 124 |
> |
FVECT v1, v2, v3; |
| 125 |
> |
{ |
| 126 |
> |
FVECT ac, bc, pc, cros; |
| 127 |
> |
double normf; |
| 128 |
> |
/* area formula w/o 2-D optimization */ |
| 129 |
> |
VSUB(ac, v1, v3); |
| 130 |
> |
VSUB(bc, v2, v3); |
| 131 |
> |
VSUB(pc, p, v3); |
| 132 |
> |
VCROSS(cros, ac, bc); |
| 133 |
> |
normf = DOT(cros,cros) |
| 134 |
> |
if (normf <= 0.0) |
| 135 |
> |
return(-1); |
| 136 |
> |
normf = 1./sqrt(normf); |
| 137 |
> |
VCROSS(cros, bc, pc); |
| 138 |
> |
wt[0] = VLEN(cros) * normf; |
| 139 |
> |
VCROSS(cros, ac, pc); |
| 140 |
> |
wt[1] = VLEN(cros) * normf; |
| 141 |
> |
wt[2] = 1. - wt[1] - wt[0]; |
| 142 |
> |
return(0); |
| 143 |
> |
} |
| 144 |
> |
#endif |
| 145 |
> |
|
| 146 |
> |
|
| 147 |
> |
void |
| 148 |
> |
put_baryc(bcm, com, n) /* put barycentric coord. vectors */ |
| 149 |
> |
register BARYCCM *bcm; |
| 150 |
> |
register FLOAT com[][3]; |
| 151 |
> |
int n; |
| 152 |
|
{ |
| 153 |
|
double a, b; |
| 154 |
|
register int i, j; |