| 6 |
|
*/ |
| 7 |
|
|
| 8 |
|
#include <stdio.h> |
| 9 |
– |
|
| 9 |
|
#include "fvect.h" |
| 11 |
– |
|
| 10 |
|
#include "tmesh.h" |
| 11 |
|
|
| 14 |
– |
#define ABS(x) ((x) >= 0 ? (x) : -(x)) |
| 12 |
|
|
| 16 |
– |
|
| 13 |
|
int |
| 14 |
< |
flat_tri(v1, v2, v3, n1, n2, n3) /* determine if triangle is flat */ |
| 15 |
< |
FVECT v1, v2, v3, n1, n2, n3; |
| 14 |
> |
flat_tri( /* determine if triangle is flat */ |
| 15 |
> |
FVECT v1, |
| 16 |
> |
FVECT v2, |
| 17 |
> |
FVECT v3, |
| 18 |
> |
FVECT n1, |
| 19 |
> |
FVECT n2, |
| 20 |
> |
FVECT n3 |
| 21 |
> |
) |
| 22 |
|
{ |
| 23 |
|
double d1, d2, d3; |
| 24 |
|
FVECT vt1, vt2, vn; |
| 25 |
|
/* compute default normal */ |
| 26 |
< |
vt1[0] = v2[0] - v1[0]; vt1[1] = v2[1] - v1[1]; vt1[2] = v2[2] - v1[2]; |
| 27 |
< |
vt2[0] = v3[0] - v2[0]; vt2[1] = v3[1] - v2[1]; vt2[2] = v3[2] - v2[2]; |
| 28 |
< |
fcross(vn, vt1, vt2); |
| 26 |
> |
VSUB(vt1, v2, v1); |
| 27 |
> |
VSUB(vt2, v3, v2); |
| 28 |
> |
VCROSS(vn, vt1, vt2); |
| 29 |
|
if (normalize(vn) == 0.0) |
| 30 |
|
return(DEGEN); |
| 31 |
|
/* compare to supplied normals */ |
| 42 |
|
|
| 43 |
|
|
| 44 |
|
int |
| 45 |
< |
comp_baryc(bcm, v1, v2, v3) /* compute barycentric vectors */ |
| 46 |
< |
register BARYCCM *bcm; |
| 47 |
< |
FLOAT *v1, *v2, *v3; |
| 45 |
> |
comp_baryc( /* compute barycentric vectors */ |
| 46 |
> |
BARYCCM *bcm, |
| 47 |
> |
RREAL *v1, |
| 48 |
> |
RREAL *v2, |
| 49 |
> |
RREAL *v3 |
| 50 |
> |
) |
| 51 |
|
{ |
| 52 |
< |
FLOAT *vt; |
| 52 |
> |
RREAL *vt; |
| 53 |
|
FVECT va, vab, vcb; |
| 54 |
|
double d; |
| 55 |
|
int ax0, ax1; |
| 56 |
< |
register int i; |
| 56 |
> |
int i; |
| 57 |
|
/* compute major axis */ |
| 58 |
< |
for (i = 0; i < 3; i++) { |
| 59 |
< |
vab[i] = v1[i] - v2[i]; |
| 60 |
< |
vcb[i] = v3[i] - v2[i]; |
| 61 |
< |
} |
| 62 |
< |
fcross(va, vab, vcb); |
| 63 |
< |
bcm->ax = ABS(va[0]) > ABS(va[1]) ? 0 : 1; |
| 64 |
< |
bcm->ax = ABS(va[bcm->ax]) > ABS(va[2]) ? bcm->ax : 2; |
| 60 |
< |
ax0 = (bcm->ax + 1) % 3; |
| 61 |
< |
ax1 = (bcm->ax + 2) % 3; |
| 58 |
> |
VSUB(vab, v1, v2); |
| 59 |
> |
VSUB(vcb, v3, v2); |
| 60 |
> |
VCROSS(va, vab, vcb); |
| 61 |
> |
bcm->ax = (va[1]*va[1] > va[0]*va[0]); |
| 62 |
> |
if (va[2]*va[2] > va[bcm->ax]*va[bcm->ax]) bcm->ax = 2; |
| 63 |
> |
ax0 = (bcm->ax + 1)%3; |
| 64 |
> |
ax1 = (bcm->ax + 2)%3; |
| 65 |
|
for (i = 0; i < 2; i++) { |
| 66 |
|
vab[0] = v1[ax0] - v2[ax0]; |
| 67 |
|
vcb[0] = v3[ax0] - v2[ax0]; |
| 70 |
|
d = vcb[0]*vcb[0] + vcb[1]*vcb[1]; |
| 71 |
|
if (d <= FTINY*FTINY) |
| 72 |
|
return(-1); |
| 73 |
< |
d = (vcb[0]*vab[0]+vcb[1]*vab[1])/d; |
| 73 |
> |
d = (vcb[0]*vab[0] + vcb[1]*vab[1])/d; |
| 74 |
|
va[0] = vab[0] - vcb[0]*d; |
| 75 |
|
va[1] = vab[1] - vcb[1]*d; |
| 76 |
|
d = va[0]*va[0] + va[1]*va[1]; |
| 79 |
|
d = 1.0/d; |
| 80 |
|
bcm->tm[i][0] = va[0] *= d; |
| 81 |
|
bcm->tm[i][1] = va[1] *= d; |
| 82 |
< |
bcm->tm[i][2] = -(v2[ax0]*va[0]+v2[ax1]*va[1]); |
| 82 |
> |
bcm->tm[i][2] = -(v2[ax0]*va[0] + v2[ax1]*va[1]); |
| 83 |
|
/* rotate vertices */ |
| 84 |
|
vt = v1; |
| 85 |
|
v1 = v2; |
| 90 |
|
} |
| 91 |
|
|
| 92 |
|
|
| 93 |
< |
put_baryc(bcm, com, n) /* put barycentric coord. vectors */ |
| 94 |
< |
register BARYCCM *bcm; |
| 95 |
< |
register FLOAT com[][3]; |
| 96 |
< |
int n; |
| 93 |
> |
void |
| 94 |
> |
eval_baryc( /* evaluate barycentric weights at p */ |
| 95 |
> |
RREAL wt[3], |
| 96 |
> |
FVECT p, |
| 97 |
> |
BARYCCM *bcm |
| 98 |
> |
) |
| 99 |
|
{ |
| 100 |
+ |
double u, v; |
| 101 |
+ |
int i; |
| 102 |
+ |
|
| 103 |
+ |
if ((i = bcm->ax + 1) >= 3) i -= 3; |
| 104 |
+ |
u = p[i]; |
| 105 |
+ |
if (++i >= 3) i -= 3; |
| 106 |
+ |
v = p[i]; |
| 107 |
+ |
wt[0] = u*bcm->tm[0][0] + v*bcm->tm[0][1] + bcm->tm[0][2]; |
| 108 |
+ |
wt[1] = u*bcm->tm[1][0] + v*bcm->tm[1][1] + bcm->tm[1][2]; |
| 109 |
+ |
wt[2] = 1. - wt[1] - wt[0]; |
| 110 |
+ |
} |
| 111 |
+ |
|
| 112 |
+ |
|
| 113 |
+ |
int |
| 114 |
+ |
get_baryc( /* compute barycentric weights at p */ |
| 115 |
+ |
RREAL wt[3], |
| 116 |
+ |
FVECT p, |
| 117 |
+ |
FVECT v1, |
| 118 |
+ |
FVECT v2, |
| 119 |
+ |
FVECT v3 |
| 120 |
+ |
) |
| 121 |
+ |
{ |
| 122 |
+ |
BARYCCM bcm; |
| 123 |
+ |
|
| 124 |
+ |
if (comp_baryc(&bcm, v1, v2, v3) < 0) |
| 125 |
+ |
return(-1); |
| 126 |
+ |
eval_baryc(wt, p, &bcm); |
| 127 |
+ |
return(0); |
| 128 |
+ |
} |
| 129 |
+ |
|
| 130 |
+ |
|
| 131 |
+ |
#if 0 |
| 132 |
+ |
int |
| 133 |
+ |
get_baryc(wt, p, v1, v2, v3) /* compute barycentric weights at p */ |
| 134 |
+ |
RREAL wt[3]; |
| 135 |
+ |
FVECT p; |
| 136 |
+ |
FVECT v1, v2, v3; |
| 137 |
+ |
{ |
| 138 |
+ |
FVECT ac, bc, pc, cros; |
| 139 |
+ |
double normf; |
| 140 |
+ |
/* area formula w/o 2-D optimization */ |
| 141 |
+ |
VSUB(ac, v1, v3); |
| 142 |
+ |
VSUB(bc, v2, v3); |
| 143 |
+ |
VSUB(pc, p, v3); |
| 144 |
+ |
VCROSS(cros, ac, bc); |
| 145 |
+ |
normf = DOT(cros,cros) |
| 146 |
+ |
if (normf <= 0.0) |
| 147 |
+ |
return(-1); |
| 148 |
+ |
normf = 1./sqrt(normf); |
| 149 |
+ |
VCROSS(cros, bc, pc); |
| 150 |
+ |
wt[0] = VLEN(cros) * normf; |
| 151 |
+ |
VCROSS(cros, ac, pc); |
| 152 |
+ |
wt[1] = VLEN(cros) * normf; |
| 153 |
+ |
wt[2] = 1. - wt[1] - wt[0]; |
| 154 |
+ |
return(0); |
| 155 |
+ |
} |
| 156 |
+ |
#endif |
| 157 |
+ |
|
| 158 |
+ |
|
| 159 |
+ |
void |
| 160 |
+ |
fput_baryc( /* put barycentric coord. vectors */ |
| 161 |
+ |
BARYCCM *bcm, |
| 162 |
+ |
RREAL com[][3], |
| 163 |
+ |
int n, |
| 164 |
+ |
FILE *fp |
| 165 |
+ |
) |
| 166 |
+ |
{ |
| 167 |
|
double a, b; |
| 168 |
< |
register int i, j; |
| 168 |
> |
int i; |
| 169 |
|
|
| 170 |
< |
printf("%d\t%d\n", 1+3*n, bcm->ax); |
| 170 |
> |
fprintf(fp, "%d\t%d\n", 1+3*n, bcm->ax); |
| 171 |
|
for (i = 0; i < n; i++) { |
| 172 |
|
a = com[i][0] - com[i][2]; |
| 173 |
|
b = com[i][1] - com[i][2]; |
| 174 |
< |
printf("%14.8f %14.8f %14.8f\n", |
| 174 |
> |
fprintf(fp, "%14.8f %14.8f %14.8f\n", |
| 175 |
|
bcm->tm[0][0]*a + bcm->tm[1][0]*b, |
| 176 |
|
bcm->tm[0][1]*a + bcm->tm[1][1]*b, |
| 177 |
|
bcm->tm[0][2]*a + bcm->tm[1][2]*b + com[i][2]); |