ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/tmesh.c
Revision: 2.3
Committed: Thu Jun 26 00:58:09 2003 UTC (20 years, 10 months ago) by schorsch
Content type: text/plain
Branch: MAIN
Changes since 2.2: +7 -7 lines
Log Message:
Abstracted process and path handling for Windows.
Renamed FLOAT to RREAL because of conflict on Windows.
Added conditional compiles for some signal handlers.

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 schorsch 2.3 static const char RCSid[] = "$Id: tmesh.c,v 2.2 2003/03/11 17:08:55 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Compute and print barycentric coordinates for triangle meshes
6     */
7    
8     #include <stdio.h>
9    
10     #include "fvect.h"
11    
12     #include "tmesh.h"
13    
14     #define ABS(x) ((x) >= 0 ? (x) : -(x))
15    
16    
17     int
18     flat_tri(v1, v2, v3, n1, n2, n3) /* determine if triangle is flat */
19     FVECT v1, v2, v3, n1, n2, n3;
20     {
21     double d1, d2, d3;
22     FVECT vt1, vt2, vn;
23     /* compute default normal */
24 greg 2.2 VSUB(vt1, v2, v1);
25     VSUB(vt2, v3, v2);
26     VCROSS(vn, vt1, vt2);
27 greg 2.1 if (normalize(vn) == 0.0)
28     return(DEGEN);
29     /* compare to supplied normals */
30     d1 = DOT(vn, n1); d2 = DOT(vn, n2); d3 = DOT(vn, n3);
31     if (d1 < 0 && d2 < 0 && d3 < 0) {
32     if (d1 > -COSTOL || d2 > -COSTOL || d3 > -COSTOL)
33     return(RVBENT);
34     return(RVFLAT);
35     }
36     if (d1 < COSTOL || d2 < COSTOL || d3 < COSTOL)
37     return(ISBENT);
38     return(ISFLAT);
39     }
40    
41    
42     int
43     comp_baryc(bcm, v1, v2, v3) /* compute barycentric vectors */
44     register BARYCCM *bcm;
45 schorsch 2.3 RREAL *v1, *v2, *v3;
46 greg 2.1 {
47 schorsch 2.3 RREAL *vt;
48 greg 2.1 FVECT va, vab, vcb;
49     double d;
50     int ax0, ax1;
51     register int i;
52     /* compute major axis */
53 greg 2.2 VSUB(vab, v1, v2);
54     VSUB(vcb, v3, v2);
55     VCROSS(va, vab, vcb);
56 greg 2.1 bcm->ax = ABS(va[0]) > ABS(va[1]) ? 0 : 1;
57     bcm->ax = ABS(va[bcm->ax]) > ABS(va[2]) ? bcm->ax : 2;
58     ax0 = (bcm->ax + 1) % 3;
59     ax1 = (bcm->ax + 2) % 3;
60     for (i = 0; i < 2; i++) {
61     vab[0] = v1[ax0] - v2[ax0];
62     vcb[0] = v3[ax0] - v2[ax0];
63     vab[1] = v1[ax1] - v2[ax1];
64     vcb[1] = v3[ax1] - v2[ax1];
65     d = vcb[0]*vcb[0] + vcb[1]*vcb[1];
66     if (d <= FTINY*FTINY)
67     return(-1);
68     d = (vcb[0]*vab[0]+vcb[1]*vab[1])/d;
69     va[0] = vab[0] - vcb[0]*d;
70     va[1] = vab[1] - vcb[1]*d;
71     d = va[0]*va[0] + va[1]*va[1];
72     if (d <= FTINY*FTINY)
73     return(-1);
74     d = 1.0/d;
75     bcm->tm[i][0] = va[0] *= d;
76     bcm->tm[i][1] = va[1] *= d;
77     bcm->tm[i][2] = -(v2[ax0]*va[0]+v2[ax1]*va[1]);
78     /* rotate vertices */
79     vt = v1;
80     v1 = v2;
81     v2 = v3;
82     v3 = vt;
83     }
84     return(0);
85     }
86    
87    
88 greg 2.2 void
89     eval_baryc(wt, p, bcm) /* evaluate barycentric weights at p */
90 schorsch 2.3 RREAL wt[3];
91 greg 2.2 FVECT p;
92     register BARYCCM *bcm;
93     {
94     double u, v;
95    
96     u = p[(bcm->ax + 1) % 3];
97     v = p[(bcm->ax + 2) % 3];
98     wt[0] = u*bcm->tm[0][0] + v*bcm->tm[0][1] + bcm->tm[0][2];
99     wt[1] = u*bcm->tm[1][0] + v*bcm->tm[1][1] + bcm->tm[1][2];
100     wt[2] = 1. - wt[1] - wt[0];
101     }
102    
103    
104     int
105     get_baryc(wt, p, v1, v2, v3) /* compute barycentric weights at p */
106 schorsch 2.3 RREAL wt[3];
107 greg 2.2 FVECT p;
108     FVECT v1, v2, v3;
109     {
110     BARYCCM bcm;
111    
112     if (comp_baryc(&bcm, v1, v2, v3) < 0)
113     return(-1);
114     eval_baryc(wt, p, &bcm);
115     return(0);
116     }
117    
118    
119     #if 0
120     int
121     get_baryc(wt, p, v1, v2, v3) /* compute barycentric weights at p */
122 schorsch 2.3 RREAL wt[3];
123 greg 2.2 FVECT p;
124     FVECT v1, v2, v3;
125     {
126     FVECT ac, bc, pc, cros;
127     double normf;
128     /* area formula w/o 2-D optimization */
129     VSUB(ac, v1, v3);
130     VSUB(bc, v2, v3);
131     VSUB(pc, p, v3);
132     VCROSS(cros, ac, bc);
133     normf = DOT(cros,cros)
134     if (normf <= 0.0)
135     return(-1);
136     normf = 1./sqrt(normf);
137     VCROSS(cros, bc, pc);
138     wt[0] = VLEN(cros) * normf;
139     VCROSS(cros, ac, pc);
140     wt[1] = VLEN(cros) * normf;
141     wt[2] = 1. - wt[1] - wt[0];
142     return(0);
143     }
144     #endif
145    
146    
147     void
148     put_baryc(bcm, com, n) /* put barycentric coord. vectors */
149 greg 2.1 register BARYCCM *bcm;
150 schorsch 2.3 register RREAL com[][3];
151 greg 2.2 int n;
152 greg 2.1 {
153     double a, b;
154     register int i, j;
155    
156     printf("%d\t%d\n", 1+3*n, bcm->ax);
157     for (i = 0; i < n; i++) {
158     a = com[i][0] - com[i][2];
159     b = com[i][1] - com[i][2];
160     printf("%14.8f %14.8f %14.8f\n",
161     bcm->tm[0][0]*a + bcm->tm[1][0]*b,
162     bcm->tm[0][1]*a + bcm->tm[1][1]*b,
163     bcm->tm[0][2]*a + bcm->tm[1][2]*b + com[i][2]);
164     }
165     }