| 1 | 
greg | 
1.1 | 
#ifndef lint | 
| 2 | 
greg | 
2.3 | 
static const char       RCSid[] = "$Id$"; | 
| 3 | 
greg | 
1.1 | 
#endif | 
| 4 | 
  | 
  | 
/* | 
| 5 | 
  | 
  | 
 * Basic linear regression calculation. | 
| 6 | 
  | 
  | 
 */ | 
| 7 | 
  | 
  | 
 | 
| 8 | 
greg | 
2.3 | 
/* ==================================================================== | 
| 9 | 
  | 
  | 
 * The Radiance Software License, Version 1.0 | 
| 10 | 
  | 
  | 
 * | 
| 11 | 
  | 
  | 
 * Copyright (c) 1990 - 2002 The Regents of the University of California, | 
| 12 | 
  | 
  | 
 * through Lawrence Berkeley National Laboratory.   All rights reserved. | 
| 13 | 
  | 
  | 
 * | 
| 14 | 
  | 
  | 
 * Redistribution and use in source and binary forms, with or without | 
| 15 | 
  | 
  | 
 * modification, are permitted provided that the following conditions | 
| 16 | 
  | 
  | 
 * are met: | 
| 17 | 
  | 
  | 
 * | 
| 18 | 
  | 
  | 
 * 1. Redistributions of source code must retain the above copyright | 
| 19 | 
  | 
  | 
 *         notice, this list of conditions and the following disclaimer. | 
| 20 | 
  | 
  | 
 * | 
| 21 | 
  | 
  | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
  | 
  | 
 *       notice, this list of conditions and the following disclaimer in | 
| 23 | 
  | 
  | 
 *       the documentation and/or other materials provided with the | 
| 24 | 
  | 
  | 
 *       distribution. | 
| 25 | 
  | 
  | 
 * | 
| 26 | 
  | 
  | 
 * 3. The end-user documentation included with the redistribution, | 
| 27 | 
  | 
  | 
 *           if any, must include the following acknowledgment: | 
| 28 | 
  | 
  | 
 *             "This product includes Radiance software | 
| 29 | 
  | 
  | 
 *                 (http://radsite.lbl.gov/) | 
| 30 | 
  | 
  | 
 *                 developed by the Lawrence Berkeley National Laboratory | 
| 31 | 
  | 
  | 
 *               (http://www.lbl.gov/)." | 
| 32 | 
  | 
  | 
 *       Alternately, this acknowledgment may appear in the software itself, | 
| 33 | 
  | 
  | 
 *       if and wherever such third-party acknowledgments normally appear. | 
| 34 | 
  | 
  | 
 * | 
| 35 | 
  | 
  | 
 * 4. The names "Radiance," "Lawrence Berkeley National Laboratory" | 
| 36 | 
  | 
  | 
 *       and "The Regents of the University of California" must | 
| 37 | 
  | 
  | 
 *       not be used to endorse or promote products derived from this | 
| 38 | 
  | 
  | 
 *       software without prior written permission. For written | 
| 39 | 
  | 
  | 
 *       permission, please contact [email protected]. | 
| 40 | 
  | 
  | 
 * | 
| 41 | 
  | 
  | 
 * 5. Products derived from this software may not be called "Radiance", | 
| 42 | 
  | 
  | 
 *       nor may "Radiance" appear in their name, without prior written | 
| 43 | 
  | 
  | 
 *       permission of Lawrence Berkeley National Laboratory. | 
| 44 | 
  | 
  | 
 * | 
| 45 | 
  | 
  | 
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED | 
| 46 | 
  | 
  | 
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
| 47 | 
  | 
  | 
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
| 48 | 
  | 
  | 
 * DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR | 
| 49 | 
  | 
  | 
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| 50 | 
  | 
  | 
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
| 51 | 
  | 
  | 
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF | 
| 52 | 
  | 
  | 
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | 
| 53 | 
  | 
  | 
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
| 54 | 
  | 
  | 
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | 
| 55 | 
  | 
  | 
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
| 56 | 
  | 
  | 
 * SUCH DAMAGE. | 
| 57 | 
  | 
  | 
 * ==================================================================== | 
| 58 | 
  | 
  | 
 * | 
| 59 | 
  | 
  | 
 * This software consists of voluntary contributions made by many | 
| 60 | 
  | 
  | 
 * individuals on behalf of Lawrence Berkeley National Laboratory.   For more | 
| 61 | 
  | 
  | 
 * information on Lawrence Berkeley National Laboratory, please see | 
| 62 | 
  | 
  | 
 * <http://www.lbl.gov/>. | 
| 63 | 
  | 
  | 
 */ | 
| 64 | 
  | 
  | 
 | 
| 65 | 
greg | 
2.2 | 
#include <math.h> | 
| 66 | 
  | 
  | 
 | 
| 67 | 
greg | 
1.1 | 
#include "linregr.h" | 
| 68 | 
  | 
  | 
 | 
| 69 | 
  | 
  | 
 | 
| 70 | 
greg | 
2.3 | 
void | 
| 71 | 
greg | 
1.1 | 
lrclear(l)                      /* initialize sum */ | 
| 72 | 
  | 
  | 
register LRSUM  *l; | 
| 73 | 
  | 
  | 
{ | 
| 74 | 
  | 
  | 
        l->xs = l->ys = l->xxs = l->yys = l->xys = 0.0; | 
| 75 | 
  | 
  | 
        l->n = 0; | 
| 76 | 
  | 
  | 
} | 
| 77 | 
  | 
  | 
 | 
| 78 | 
  | 
  | 
 | 
| 79 | 
greg | 
2.3 | 
int | 
| 80 | 
greg | 
1.1 | 
flrpoint(x, y, l)               /* add point (x,y) to sum */ | 
| 81 | 
  | 
  | 
double  x, y; | 
| 82 | 
  | 
  | 
register LRSUM  *l; | 
| 83 | 
  | 
  | 
{ | 
| 84 | 
  | 
  | 
        l->xs += x; | 
| 85 | 
  | 
  | 
        l->ys += y; | 
| 86 | 
  | 
  | 
        l->xxs += x*x; | 
| 87 | 
  | 
  | 
        l->yys += y*y; | 
| 88 | 
  | 
  | 
        l->xys += x*y; | 
| 89 | 
  | 
  | 
        return(++l->n); | 
| 90 | 
  | 
  | 
} | 
| 91 | 
  | 
  | 
 | 
| 92 | 
  | 
  | 
 | 
| 93 | 
greg | 
2.3 | 
int | 
| 94 | 
greg | 
1.1 | 
lrfit(r, l)                     /* compute linear regression */ | 
| 95 | 
  | 
  | 
register LRLIN  *r; | 
| 96 | 
  | 
  | 
register LRSUM  *l; | 
| 97 | 
  | 
  | 
{ | 
| 98 | 
  | 
  | 
        double  nxvar, nyvar; | 
| 99 | 
  | 
  | 
 | 
| 100 | 
  | 
  | 
        if (l->n < 2) | 
| 101 | 
  | 
  | 
                return(-1); | 
| 102 | 
  | 
  | 
        nxvar = l->xxs - l->xs*l->xs/l->n; | 
| 103 | 
  | 
  | 
        nyvar = l->yys - l->ys*l->ys/l->n; | 
| 104 | 
  | 
  | 
        if (nxvar == 0.0 || nyvar == 0.0) | 
| 105 | 
  | 
  | 
                return(-1); | 
| 106 | 
  | 
  | 
        r->slope = (l->xys - l->xs*l->ys/l->n) / nxvar; | 
| 107 | 
  | 
  | 
        r->intercept = (l->ys - r->slope*l->xs) / l->n; | 
| 108 | 
  | 
  | 
        r->correlation = r->slope*sqrt(nxvar/nyvar); | 
| 109 | 
  | 
  | 
        return(0); | 
| 110 | 
  | 
  | 
} |