ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.14
Committed: Fri Jun 6 00:56:42 2014 UTC (9 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad4R2P2, rad5R0, rad5R1, rad4R2, rad4R2P1, rad5R3
Changes since 2.13: +2 -2 lines
Log Message:
Removed address operator not needed for function pointer

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.14 static const char RCSid[] = "$Id: interp2d.c,v 2.13 2013/02/16 00:41:12 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20 greg 2.7 * angular slice. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26 greg 2.13 * a fast approximation to the atan2(y,x) function and a low-res
27     * map indicating where sample weights are significant.
28 greg 2.4 ****************************************************************/
29 greg 2.1
30     #include <stdio.h>
31     #include <stdlib.h>
32     #include "rtmath.h"
33     #include "interp2d.h"
34    
35 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37 greg 2.1
38     /* Sample order (private) */
39     typedef struct {
40     int si; /* sample index */
41     float dm; /* distance measure in this direction */
42     } SAMPORD;
43    
44 greg 2.13 /* private routine to encode sample diameter with range checks */
45     static int
46     encode_diameter(const INTERP2 *ip, double d)
47     {
48     const int ed = ENCODE_DIA(ip, d);
49    
50     if (ed <= 0)
51     return(0);
52     if (ed >= 0xffff)
53     return(0xffff);
54     return(ed);
55     }
56    
57 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
58 greg 2.1 INTERP2 *
59     interp2_alloc(int nsamps)
60     {
61     INTERP2 *nip;
62    
63     if (nsamps <= 1)
64     return(NULL);
65    
66     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
67     if (nip == NULL)
68     return(NULL);
69    
70     nip->ns = nsamps;
71 greg 2.4 nip->dmin = 1; /* default minimum diameter */
72 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
73 greg 2.4 nip->da = NULL;
74 greg 2.1 /* caller must assign spt[] array */
75     return(nip);
76     }
77    
78 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
79     INTERP2 *
80     interp2_realloc(INTERP2 *ip, int nsamps)
81     {
82     if (ip == NULL)
83     return(interp2_alloc(nsamps));
84     if (nsamps <= 1) {
85     interp2_free(ip);
86     return(NULL);
87     }
88 greg 2.8 if (nsamps == ip->ns)
89 greg 2.2 return(ip);
90 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
91     free(ip->da);
92     ip->da = NULL;
93 greg 2.2 }
94     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
95     if (ip == NULL)
96     return(NULL);
97     ip->ns = nsamps;
98     return(ip);
99     }
100    
101 greg 2.5 /* Set minimum distance under which samples will start to merge */
102     void
103     interp2_spacing(INTERP2 *ip, double mind)
104     {
105     if (mind <= 0)
106     return;
107 greg 2.7 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
108 greg 2.5 return;
109     if (ip->da != NULL) { /* will need to recompute distribution */
110     free(ip->da);
111     ip->da = NULL;
112     }
113     ip->dmin = mind;
114     }
115    
116 greg 2.12 /* Compute unnormalized weight for a position relative to a sample */
117     double
118     interp2_wti(INTERP2 *ip, const int i, double x, double y)
119     {
120     double dir, rd, r2, d2;
121     int ri;
122     /* get relative direction */
123     x -= ip->spt[i][0];
124     y -= ip->spt[i][1];
125     dir = atan2a(y, x);
126     dir += 2.*PI*(dir < 0);
127     /* linear radius interpolation */
128     rd = dir * (NI2DIR/2./PI);
129     ri = (int)rd;
130     rd -= (double)ri;
131     rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
132     rd = ip->smf * DECODE_DIA(ip, rd);
133     r2 = 2.*rd*rd;
134     d2 = x*x + y*y;
135     if (d2 > 21.*r2) /* result would be < 1e-9 */
136     return(.0);
137     /* Gaussian times harmonic weighting */
138     return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
139     }
140    
141     /* private call to get grid flag index */
142     static int
143     interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
144     {
145     int inbounds = 0;
146    
147     if (ip == NULL) /* paranoia */
148     return(-1);
149     /* need to compute interpolant? */
150     if (ip->da == NULL && !interp2_analyze(ip))
151     return(-1);
152     /* get x & y grid positions */
153     fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
154    
155     if (fgi[0] >= NI2DIM)
156     fgi[0] = NI2DIM-1;
157     else if (fgi[0] < 0)
158     fgi[0] = 0;
159     else
160     ++inbounds;
161    
162     fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
163    
164     if (fgi[1] >= NI2DIM)
165     fgi[1] = NI2DIM-1;
166     else if (fgi[1] < 0)
167     fgi[1] = 0;
168     else
169     ++inbounds;
170    
171     return(inbounds == 2);
172     }
173    
174     #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
175    
176     #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
177    
178     /* private flood function to determine sample influence */
179     static void
180     influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
181     int xfi, int yfi)
182     {
183     double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
184     ip->smin[0];
185     double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
186     ip->smin[1];
187     double dx = gx - ip->spt[i][0];
188     double dy = gy - ip->spt[i][1];
189    
190     setflg(visited, xfi, yfi);
191    
192     if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
193     return;
194    
195     setflg(ip->da[i].infl, xfi, yfi);
196    
197     if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
198     influence_flood(ip, i, visited, xfi-1, yfi);
199    
200     if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
201     influence_flood(ip, i, visited, xfi, yfi-1);
202    
203     if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
204     influence_flood(ip, i, visited, xfi+1, yfi);
205    
206     if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
207     influence_flood(ip, i, visited, xfi, yfi+1);
208     }
209    
210 greg 2.13 /* private call to compute sample influence maps */
211     static void
212     map_influence(INTERP2 *ip)
213     {
214     unsigned short visited[NI2DIM];
215     int fgi[2];
216     int i, j;
217    
218     for (i = ip->ns; i--; ) {
219     for (j = NI2DIM; j--; ) {
220     ip->da[i].infl[j] = 0;
221     visited[j] = 0;
222     }
223     interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
224    
225     influence_flood(ip, i, visited, fgi[0], fgi[1]);
226     }
227     }
228    
229     /* Modify smoothing parameter by the given factor */
230     void
231     interp2_smooth(INTERP2 *ip, double sf)
232     {
233     float old_smf = ip->smf;
234    
235     if ((ip->smf *= sf) < NI2DSMF)
236     ip->smf = NI2DSMF;
237     /* need to recompute influence maps? */
238     if (ip->da != NULL && (old_smf*.85 > ip->smf) |
239     (ip->smf > old_smf*1.15))
240     map_influence(ip);
241     }
242    
243     /* private call-back to sort position index */
244     static int
245     cmp_spos(const void *p1, const void *p2)
246     {
247     const SAMPORD *so1 = (const SAMPORD *)p1;
248     const SAMPORD *so2 = (const SAMPORD *)p2;
249    
250     if (so1->dm > so2->dm)
251     return 1;
252     if (so1->dm < so2->dm)
253     return -1;
254     return 0;
255     }
256    
257     /* private routine to order samples in a particular direction */
258     static void
259     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
260     {
261     const double cosd = cos(ang);
262     const double sind = sin(ang);
263     int i;
264    
265     for (i = ip->ns; i--; ) {
266     sord[i].si = i;
267     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
268     }
269 greg 2.14 qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos);
270 greg 2.13 }
271    
272 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
273     int
274     interp2_analyze(INTERP2 *ip)
275 greg 2.1 {
276     SAMPORD *sortord;
277 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
278 greg 2.13 int i, bd;
279 greg 2.1 /* sanity checks */
280 greg 2.10 if (ip == NULL)
281     return(0);
282     if (ip->da != NULL) { /* free previous data if any */
283     free(ip->da);
284     ip->da = NULL;
285     }
286     if ((ip->ns <= 1) | (ip->dmin <= 0))
287 greg 2.1 return(0);
288 greg 2.10 /* compute sample domain */
289     ip->smin[0] = ip->smin[1] = FHUGE;
290 greg 2.11 ip->smax[0] = ip->smax[1] = -FHUGE;
291 greg 2.10 for (i = ip->ns; i--; ) {
292 greg 2.12 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
293     if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
294     if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
295     if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
296 greg 2.1 }
297 greg 2.11 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
298     (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
299     (1./NI2DIM/NI2DIM);
300 greg 2.10 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
301     return(0);
302     /* allocate analysis data */
303 greg 2.13 ip->da = (struct interp2_samp *)malloc(
304     sizeof(struct interp2_samp)*ip->ns );
305 greg 2.10 if (ip->da == NULL)
306     return(0);
307 greg 2.12 /* allocate temporary arrays */
308 greg 2.1 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
309     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
310     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
311 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
312     if ((sortord == NULL) | (rightrndx == NULL) |
313     (leftrndx == NULL) | (endrndx == NULL))
314 greg 2.1 return(0);
315     /* run through bidirections */
316     for (bd = 0; bd < NI2DIR/2; bd++) {
317     const double ang = 2.*PI/NI2DIR*bd;
318 greg 2.2 int *sptr;
319 greg 2.1 /* create right reverse index */
320 greg 2.2 if (bd) { /* re-use from previous iteration? */
321     sptr = rightrndx;
322 greg 2.1 rightrndx = leftrndx;
323     leftrndx = sptr;
324 greg 2.2 } else { /* else sort first half-plane */
325     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
326     for (i = ip->ns; i--; )
327 greg 2.1 rightrndx[sortord[i].si] = i;
328 greg 2.2 /* & store reverse order for later */
329     for (i = ip->ns; i--; )
330     endrndx[sortord[i].si] = ip->ns-1 - i;
331 greg 2.1 }
332     /* create new left reverse index */
333 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
334     sptr = leftrndx;
335     leftrndx = endrndx;
336     endrndx = sptr;
337     } else { /* else compute new half-plane */
338     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
339     for (i = ip->ns; i--; )
340     leftrndx[sortord[i].si] = i;
341 greg 2.1 }
342     /* sort grid values in this direction */
343 greg 2.2 sort_samples(sortord, ip, ang);
344 greg 2.1 /* find nearest neighbors each side */
345 greg 2.2 for (i = ip->ns; i--; ) {
346 greg 2.3 const int ii = sortord[i].si;
347 greg 2.13 int j;
348 greg 2.3 /* preload with large radii */
349 greg 2.10 ip->da[ii].dia[bd] =
350     ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
351     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
352 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
353 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
354     leftrndx[sortord[j].si] < leftrndx[ii]) {
355 greg 2.10 ip->da[ii].dia[bd] = encode_diameter(ip,
356 greg 2.4 sortord[j].dm - sortord[i].dm);
357 greg 2.1 break;
358     }
359     for (j = i; j-- > 0; ) /* nearest below */
360 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
361     leftrndx[sortord[j].si] > leftrndx[ii]) {
362 greg 2.10 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
363 greg 2.4 sortord[i].dm - sortord[j].dm);
364 greg 2.1 break;
365     }
366     }
367     }
368 greg 2.12 free(sortord); /* release temp arrays */
369 greg 2.1 free(rightrndx);
370     free(leftrndx);
371 greg 2.2 free(endrndx);
372 greg 2.13 /* map sample influence areas */
373     map_influence(ip);
374 greg 2.12 return(1); /* all done */
375 greg 2.11 }
376    
377 greg 2.1 /* Assign full set of normalized weights to interpolate the given position */
378     int
379     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
380     {
381     double wnorm;
382 greg 2.11 int fgi[2];
383 greg 2.1 int i;
384    
385 greg 2.11 if (wtv == NULL)
386     return(0);
387     /* get flag position */
388 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
389 greg 2.1 return(0);
390    
391     wnorm = 0; /* compute raw weights */
392 greg 2.11 for (i = ip->ns; i--; )
393 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
394 greg 2.10 double wt = interp2_wti(ip, i, x, y);
395 greg 2.1 wtv[i] = wt;
396     wnorm += wt;
397 greg 2.12 } else
398     wtv[i] = 0;
399 greg 2.1 if (wnorm <= 0) /* too far from all our samples! */
400     return(0);
401     wnorm = 1./wnorm; /* normalize weights */
402     for (i = ip->ns; i--; )
403     wtv[i] *= wnorm;
404     return(ip->ns); /* all done */
405     }
406    
407    
408     /* Get normalized weights and indexes for n best samples in descending order */
409     int
410     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
411     {
412     int nn = 0;
413 greg 2.11 int fgi[2];
414 greg 2.1 double wnorm;
415     int i, j;
416    
417 greg 2.11 if ((n <= 0) | (wt == NULL) | (si == NULL))
418     return(0);
419     /* get flag position */
420 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
421 greg 2.1 return(0);
422     /* identify top n weights */
423 greg 2.11 for (i = ip->ns; i--; )
424 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
425 greg 2.10 const double wti = interp2_wti(ip, i, x, y);
426 greg 2.1 for (j = nn; j > 0; j--) {
427 greg 2.3 if (wt[j-1] >= wti)
428 greg 2.1 break;
429     if (j < n) {
430     wt[j] = wt[j-1];
431     si[j] = si[j-1];
432     }
433     }
434     if (j < n) { /* add/insert sample */
435 greg 2.3 wt[j] = wti;
436 greg 2.1 si[j] = i;
437     nn += (nn < n);
438     }
439 greg 2.11 }
440 greg 2.3 wnorm = 0; /* normalize sample weights */
441     for (j = nn; j--; )
442     wnorm += wt[j];
443 greg 2.1 if (wnorm <= 0)
444     return(0);
445     wnorm = 1./wnorm;
446     for (j = nn; j--; )
447     wt[j] *= wnorm;
448     return(nn); /* return actual # samples */
449     }
450    
451     /* Free interpolant */
452     void
453     interp2_free(INTERP2 *ip)
454     {
455     if (ip == NULL)
456     return;
457 greg 2.4 if (ip->da != NULL)
458     free(ip->da);
459 greg 2.1 free(ip);
460     }