| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: interp2d.c,v 2.7 2013/02/12 17:47:58 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* General interpolation method for unstructured values on 2-D plane.
|
| 6 |
*
|
| 7 |
* G.Ward Feb 2013
|
| 8 |
*/
|
| 9 |
|
| 10 |
#include "copyright.h"
|
| 11 |
|
| 12 |
/***************************************************************
|
| 13 |
* This is a general method for 2-D interpolation similar to
|
| 14 |
* radial basis functions but allowing for a good deal of local
|
| 15 |
* anisotropy in the point distribution. Each sample point
|
| 16 |
* is examined to determine the closest neighboring samples in
|
| 17 |
* each of NI2DIR surrounding directions. To speed this
|
| 18 |
* calculation, we sort the data into half-planes and apply
|
| 19 |
* simple tests to see which neighbor is closest in each
|
| 20 |
* angular slice. Once we have our approximate neighborhood
|
| 21 |
* for a sample, we can use it in a modified Gaussian weighting
|
| 22 |
* with allowing local anisotropy. Harmonic weighting is added
|
| 23 |
* to reduce the influence of distant neighbors. This yields a
|
| 24 |
* smooth interpolation regardless of how the sample points are
|
| 25 |
* initially distributed. Evaluation is accelerated by use of
|
| 26 |
* a fast approximation to the atan2(y,x) function.
|
| 27 |
****************************************************************/
|
| 28 |
|
| 29 |
#include <stdio.h>
|
| 30 |
#include <stdlib.h>
|
| 31 |
#include "rtmath.h"
|
| 32 |
#include "interp2d.h"
|
| 33 |
|
| 34 |
#define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
|
| 35 |
#define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
|
| 36 |
|
| 37 |
/* Sample order (private) */
|
| 38 |
typedef struct {
|
| 39 |
int si; /* sample index */
|
| 40 |
float dm; /* distance measure in this direction */
|
| 41 |
} SAMPORD;
|
| 42 |
|
| 43 |
/* Allocate a new set of interpolation samples (caller assigns spt[] array) */
|
| 44 |
INTERP2 *
|
| 45 |
interp2_alloc(int nsamps)
|
| 46 |
{
|
| 47 |
INTERP2 *nip;
|
| 48 |
|
| 49 |
if (nsamps <= 1)
|
| 50 |
return(NULL);
|
| 51 |
|
| 52 |
nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
|
| 53 |
if (nip == NULL)
|
| 54 |
return(NULL);
|
| 55 |
|
| 56 |
nip->ns = nsamps;
|
| 57 |
nip->dmin = 1; /* default minimum diameter */
|
| 58 |
nip->smf = NI2DSMF; /* default smoothing factor */
|
| 59 |
nip->da = NULL;
|
| 60 |
/* caller must assign spt[] array */
|
| 61 |
return(nip);
|
| 62 |
}
|
| 63 |
|
| 64 |
/* Resize interpolation array (caller must assign any new values) */
|
| 65 |
INTERP2 *
|
| 66 |
interp2_realloc(INTERP2 *ip, int nsamps)
|
| 67 |
{
|
| 68 |
if (ip == NULL)
|
| 69 |
return(interp2_alloc(nsamps));
|
| 70 |
if (nsamps <= 1) {
|
| 71 |
interp2_free(ip);
|
| 72 |
return(NULL);
|
| 73 |
}
|
| 74 |
if (nsamps == ip->ns)
|
| 75 |
return(ip);
|
| 76 |
if (ip->da != NULL) { /* will need to recompute distribution */
|
| 77 |
free(ip->da);
|
| 78 |
ip->da = NULL;
|
| 79 |
}
|
| 80 |
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
|
| 81 |
if (ip == NULL)
|
| 82 |
return(NULL);
|
| 83 |
ip->ns = nsamps;
|
| 84 |
return(ip);
|
| 85 |
}
|
| 86 |
|
| 87 |
/* Set minimum distance under which samples will start to merge */
|
| 88 |
void
|
| 89 |
interp2_spacing(INTERP2 *ip, double mind)
|
| 90 |
{
|
| 91 |
if (mind <= 0)
|
| 92 |
return;
|
| 93 |
if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
|
| 94 |
return;
|
| 95 |
if (ip->da != NULL) { /* will need to recompute distribution */
|
| 96 |
free(ip->da);
|
| 97 |
ip->da = NULL;
|
| 98 |
}
|
| 99 |
ip->dmin = mind;
|
| 100 |
}
|
| 101 |
|
| 102 |
/* Modify smoothing parameter by the given factor */
|
| 103 |
void
|
| 104 |
interp2_smooth(INTERP2 *ip, double sf)
|
| 105 |
{
|
| 106 |
if ((ip->smf *= sf) < NI2DSMF)
|
| 107 |
ip->smf = NI2DSMF;
|
| 108 |
}
|
| 109 |
|
| 110 |
/* private call-back to sort position index */
|
| 111 |
static int
|
| 112 |
cmp_spos(const void *p1, const void *p2)
|
| 113 |
{
|
| 114 |
const SAMPORD *so1 = (const SAMPORD *)p1;
|
| 115 |
const SAMPORD *so2 = (const SAMPORD *)p2;
|
| 116 |
|
| 117 |
if (so1->dm > so2->dm)
|
| 118 |
return 1;
|
| 119 |
if (so1->dm < so2->dm)
|
| 120 |
return -1;
|
| 121 |
return 0;
|
| 122 |
}
|
| 123 |
|
| 124 |
/* private routine to order samples in a particular direction */
|
| 125 |
static void
|
| 126 |
sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
|
| 127 |
{
|
| 128 |
const double cosd = cos(ang);
|
| 129 |
const double sind = sin(ang);
|
| 130 |
int i;
|
| 131 |
|
| 132 |
for (i = ip->ns; i--; ) {
|
| 133 |
sord[i].si = i;
|
| 134 |
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
|
| 135 |
}
|
| 136 |
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
|
| 137 |
}
|
| 138 |
|
| 139 |
/* private routine to encode sample diameter with range checks */
|
| 140 |
static int
|
| 141 |
encode_diameter(const INTERP2 *ip, double d)
|
| 142 |
{
|
| 143 |
const int ed = ENCODE_DIA(ip, d);
|
| 144 |
|
| 145 |
if (ed <= 0)
|
| 146 |
return(0);
|
| 147 |
if (ed >= 0xffff)
|
| 148 |
return(0xffff);
|
| 149 |
return(ed);
|
| 150 |
}
|
| 151 |
|
| 152 |
/* (Re)compute anisotropic basis function interpolant (normally automatic) */
|
| 153 |
int
|
| 154 |
interp2_analyze(INTERP2 *ip)
|
| 155 |
{
|
| 156 |
SAMPORD *sortord;
|
| 157 |
int *rightrndx, *leftrndx, *endrndx;
|
| 158 |
int bd;
|
| 159 |
/* sanity checks */
|
| 160 |
if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0))
|
| 161 |
return(0);
|
| 162 |
/* need to allocate? */
|
| 163 |
if (ip->da == NULL) {
|
| 164 |
ip->da = (unsigned short (*)[NI2DIR])malloc(
|
| 165 |
sizeof(unsigned short)*NI2DIR*ip->ns);
|
| 166 |
if (ip->da == NULL)
|
| 167 |
return(0);
|
| 168 |
}
|
| 169 |
/* get temporary arrays */
|
| 170 |
sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
|
| 171 |
rightrndx = (int *)malloc(sizeof(int)*ip->ns);
|
| 172 |
leftrndx = (int *)malloc(sizeof(int)*ip->ns);
|
| 173 |
endrndx = (int *)malloc(sizeof(int)*ip->ns);
|
| 174 |
if ((sortord == NULL) | (rightrndx == NULL) |
|
| 175 |
(leftrndx == NULL) | (endrndx == NULL))
|
| 176 |
return(0);
|
| 177 |
/* run through bidirections */
|
| 178 |
for (bd = 0; bd < NI2DIR/2; bd++) {
|
| 179 |
const double ang = 2.*PI/NI2DIR*bd;
|
| 180 |
int *sptr;
|
| 181 |
int i;
|
| 182 |
/* create right reverse index */
|
| 183 |
if (bd) { /* re-use from previous iteration? */
|
| 184 |
sptr = rightrndx;
|
| 185 |
rightrndx = leftrndx;
|
| 186 |
leftrndx = sptr;
|
| 187 |
} else { /* else sort first half-plane */
|
| 188 |
sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
|
| 189 |
for (i = ip->ns; i--; )
|
| 190 |
rightrndx[sortord[i].si] = i;
|
| 191 |
/* & store reverse order for later */
|
| 192 |
for (i = ip->ns; i--; )
|
| 193 |
endrndx[sortord[i].si] = ip->ns-1 - i;
|
| 194 |
}
|
| 195 |
/* create new left reverse index */
|
| 196 |
if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
|
| 197 |
sptr = leftrndx;
|
| 198 |
leftrndx = endrndx;
|
| 199 |
endrndx = sptr;
|
| 200 |
} else { /* else compute new half-plane */
|
| 201 |
sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
|
| 202 |
for (i = ip->ns; i--; )
|
| 203 |
leftrndx[sortord[i].si] = i;
|
| 204 |
}
|
| 205 |
/* sort grid values in this direction */
|
| 206 |
sort_samples(sortord, ip, ang);
|
| 207 |
/* find nearest neighbors each side */
|
| 208 |
for (i = ip->ns; i--; ) {
|
| 209 |
const int ii = sortord[i].si;
|
| 210 |
int j;
|
| 211 |
/* preload with large radii */
|
| 212 |
ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
|
| 213 |
.5*(sortord[ip->ns-1].dm - sortord[0].dm));
|
| 214 |
for (j = i; ++j < ip->ns; ) /* nearest above */
|
| 215 |
if (rightrndx[sortord[j].si] > rightrndx[ii] &&
|
| 216 |
leftrndx[sortord[j].si] < leftrndx[ii]) {
|
| 217 |
ip->da[ii][bd] = encode_diameter(ip,
|
| 218 |
sortord[j].dm - sortord[i].dm);
|
| 219 |
break;
|
| 220 |
}
|
| 221 |
for (j = i; j-- > 0; ) /* nearest below */
|
| 222 |
if (rightrndx[sortord[j].si] < rightrndx[ii] &&
|
| 223 |
leftrndx[sortord[j].si] > leftrndx[ii]) {
|
| 224 |
ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
|
| 225 |
sortord[i].dm - sortord[j].dm);
|
| 226 |
break;
|
| 227 |
}
|
| 228 |
}
|
| 229 |
}
|
| 230 |
free(sortord); /* clean up */
|
| 231 |
free(rightrndx);
|
| 232 |
free(leftrndx);
|
| 233 |
free(endrndx);
|
| 234 |
return(1);
|
| 235 |
}
|
| 236 |
|
| 237 |
/* private call returns raw weight for a particular sample */
|
| 238 |
static double
|
| 239 |
get_wt(const INTERP2 *ip, const int i, double x, double y)
|
| 240 |
{
|
| 241 |
double dir, rd, r2, d2;
|
| 242 |
int ri;
|
| 243 |
/* get relative direction */
|
| 244 |
x -= ip->spt[i][0];
|
| 245 |
y -= ip->spt[i][1];
|
| 246 |
dir = atan2a(y, x);
|
| 247 |
dir += 2.*PI*(dir < 0);
|
| 248 |
/* linear radius interpolation */
|
| 249 |
rd = dir * (NI2DIR/2./PI);
|
| 250 |
ri = (int)rd;
|
| 251 |
rd -= (double)ri;
|
| 252 |
rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR];
|
| 253 |
rd = ip->smf * DECODE_DIA(ip, rd);
|
| 254 |
r2 = 2.*rd*rd;
|
| 255 |
d2 = x*x + y*y;
|
| 256 |
if (d2 > 21.*r2) /* result would be < 1e-9 */
|
| 257 |
return(.0);
|
| 258 |
/* Gaussian times harmonic weighting */
|
| 259 |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
|
| 260 |
}
|
| 261 |
|
| 262 |
/* Assign full set of normalized weights to interpolate the given position */
|
| 263 |
int
|
| 264 |
interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
|
| 265 |
{
|
| 266 |
double wnorm;
|
| 267 |
int i;
|
| 268 |
|
| 269 |
if ((wtv == NULL) | (ip == NULL))
|
| 270 |
return(0);
|
| 271 |
/* need to compute interpolant? */
|
| 272 |
if (ip->da == NULL && !interp2_analyze(ip))
|
| 273 |
return(0);
|
| 274 |
|
| 275 |
wnorm = 0; /* compute raw weights */
|
| 276 |
for (i = ip->ns; i--; ) {
|
| 277 |
double wt = get_wt(ip, i, x, y);
|
| 278 |
wtv[i] = wt;
|
| 279 |
wnorm += wt;
|
| 280 |
}
|
| 281 |
if (wnorm <= 0) /* too far from all our samples! */
|
| 282 |
return(0);
|
| 283 |
wnorm = 1./wnorm; /* normalize weights */
|
| 284 |
for (i = ip->ns; i--; )
|
| 285 |
wtv[i] *= wnorm;
|
| 286 |
return(ip->ns); /* all done */
|
| 287 |
}
|
| 288 |
|
| 289 |
|
| 290 |
/* Get normalized weights and indexes for n best samples in descending order */
|
| 291 |
int
|
| 292 |
interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
|
| 293 |
{
|
| 294 |
int nn = 0;
|
| 295 |
double wnorm;
|
| 296 |
int i, j;
|
| 297 |
|
| 298 |
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL))
|
| 299 |
return(0);
|
| 300 |
/* need to compute interpolant? */
|
| 301 |
if (ip->da == NULL && !interp2_analyze(ip))
|
| 302 |
return(0);
|
| 303 |
/* identify top n weights */
|
| 304 |
for (i = ip->ns; i--; ) {
|
| 305 |
const double wti = get_wt(ip, i, x, y);
|
| 306 |
for (j = nn; j > 0; j--) {
|
| 307 |
if (wt[j-1] >= wti)
|
| 308 |
break;
|
| 309 |
if (j < n) {
|
| 310 |
wt[j] = wt[j-1];
|
| 311 |
si[j] = si[j-1];
|
| 312 |
}
|
| 313 |
}
|
| 314 |
if (j < n) { /* add/insert sample */
|
| 315 |
wt[j] = wti;
|
| 316 |
si[j] = i;
|
| 317 |
nn += (nn < n);
|
| 318 |
}
|
| 319 |
}
|
| 320 |
wnorm = 0; /* normalize sample weights */
|
| 321 |
for (j = nn; j--; )
|
| 322 |
wnorm += wt[j];
|
| 323 |
if (wnorm <= 0)
|
| 324 |
return(0);
|
| 325 |
wnorm = 1./wnorm;
|
| 326 |
for (j = nn; j--; )
|
| 327 |
wt[j] *= wnorm;
|
| 328 |
return(nn); /* return actual # samples */
|
| 329 |
}
|
| 330 |
|
| 331 |
/* Free interpolant */
|
| 332 |
void
|
| 333 |
interp2_free(INTERP2 *ip)
|
| 334 |
{
|
| 335 |
if (ip == NULL)
|
| 336 |
return;
|
| 337 |
if (ip->da != NULL)
|
| 338 |
free(ip->da);
|
| 339 |
free(ip);
|
| 340 |
}
|