ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.4
Committed: Mon Feb 11 22:56:22 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.3: +39 -39 lines
Log Message:
Changed radius specification to diameter and added usage comment

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: interp2d.c,v 2.3 2013/02/11 20:01:15 greg Exp $";
3 #endif
4 /*
5 * General interpolation method for unstructured values on 2-D plane.
6 *
7 * G.Ward Feb 2013
8 */
9
10 #include "copyright.h"
11
12 /***************************************************************
13 * This is a general method for 2-D interpolation similar to
14 * radial basis functions but allowing for a good deal of local
15 * anisotropy in the point distribution. Each sample point
16 * is examined to determine the closest neighboring samples in
17 * each of NI2DIR surrounding directions. To speed this
18 * calculation, we sort the data into half-planes and apply
19 * simple tests to see which neighbor is closest in each
20 * direction. Once we have our approximate neighborhood
21 * for a sample, we can use it in a modified Gaussian weighting
22 * with allowing local anisotropy. Harmonic weighting is added
23 * to reduce the influence of distant neighbors. This yields a
24 * smooth interpolation regardless of how the sample points are
25 * initially distributed. Evaluation is accelerated by use of
26 * a fast approximation to the atan2(y,x) function.
27 ****************************************************************/
28
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include "rtmath.h"
32 #include "interp2d.h"
33
34 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
35 #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
36
37 /* Sample order (private) */
38 typedef struct {
39 int si; /* sample index */
40 float dm; /* distance measure in this direction */
41 } SAMPORD;
42
43 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
44 INTERP2 *
45 interp2_alloc(int nsamps)
46 {
47 INTERP2 *nip;
48
49 if (nsamps <= 1)
50 return(NULL);
51
52 nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
53 if (nip == NULL)
54 return(NULL);
55
56 nip->ns = nsamps;
57 nip->dmin = 1; /* default minimum diameter */
58 nip->smf = NI2DSMF; /* default smoothing factor */
59 nip->da = NULL;
60 /* caller must assign spt[] array */
61 return(nip);
62 }
63
64 /* Resize interpolation array (caller must assign any new values) */
65 INTERP2 *
66 interp2_realloc(INTERP2 *ip, int nsamps)
67 {
68 if (ip == NULL)
69 return(interp2_alloc(nsamps));
70 if (nsamps <= 1) {
71 interp2_free(ip);
72 return(NULL);
73 }
74 if (nsamps == ip->ns);
75 return(ip);
76 if (ip->da != NULL) { /* will need to recompute distribution */
77 free(ip->da);
78 ip->da = NULL;
79 }
80 ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
81 if (ip == NULL)
82 return(NULL);
83 ip->ns = nsamps;
84 return(ip);
85 }
86
87 /* private call-back to sort position index */
88 static int
89 cmp_spos(const void *p1, const void *p2)
90 {
91 const SAMPORD *so1 = (const SAMPORD *)p1;
92 const SAMPORD *so2 = (const SAMPORD *)p2;
93
94 if (so1->dm > so2->dm)
95 return 1;
96 if (so1->dm < so2->dm)
97 return -1;
98 return 0;
99 }
100
101 /* private routine to order samples in a particular direction */
102 static void
103 sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
104 {
105 const double cosd = cos(ang);
106 const double sind = sin(ang);
107 int i;
108
109 for (i = ip->ns; i--; ) {
110 sord[i].si = i;
111 sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
112 }
113 qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
114 }
115
116 /* private routine to encode sample diameter with range checks */
117 static int
118 encode_diameter(const INTERP2 *ip, double d)
119 {
120 const int ed = ENCODE_DIA(ip, d);
121
122 if (ed <= 0)
123 return(0);
124 if (ed >= 0xffff)
125 return(0xffff);
126 return(ed);
127 }
128
129 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
130 int
131 interp2_analyze(INTERP2 *ip)
132 {
133 SAMPORD *sortord;
134 int *rightrndx, *leftrndx, *endrndx;
135 int bd;
136 /* sanity checks */
137 if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0))
138 return(0);
139 /* need to allocate? */
140 if (ip->da == NULL) {
141 ip->da = (unsigned short (*)[NI2DIR])malloc(
142 sizeof(unsigned short)*NI2DIR*ip->ns);
143 if (ip->da == NULL)
144 return(0);
145 }
146 /* get temporary arrays */
147 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
148 rightrndx = (int *)malloc(sizeof(int)*ip->ns);
149 leftrndx = (int *)malloc(sizeof(int)*ip->ns);
150 endrndx = (int *)malloc(sizeof(int)*ip->ns);
151 if ((sortord == NULL) | (rightrndx == NULL) |
152 (leftrndx == NULL) | (endrndx == NULL))
153 return(0);
154 /* run through bidirections */
155 for (bd = 0; bd < NI2DIR/2; bd++) {
156 const double ang = 2.*PI/NI2DIR*bd;
157 int *sptr;
158 int i;
159 /* create right reverse index */
160 if (bd) { /* re-use from previous iteration? */
161 sptr = rightrndx;
162 rightrndx = leftrndx;
163 leftrndx = sptr;
164 } else { /* else sort first half-plane */
165 sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
166 for (i = ip->ns; i--; )
167 rightrndx[sortord[i].si] = i;
168 /* & store reverse order for later */
169 for (i = ip->ns; i--; )
170 endrndx[sortord[i].si] = ip->ns-1 - i;
171 }
172 /* create new left reverse index */
173 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
174 sptr = leftrndx;
175 leftrndx = endrndx;
176 endrndx = sptr;
177 } else { /* else compute new half-plane */
178 sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
179 for (i = ip->ns; i--; )
180 leftrndx[sortord[i].si] = i;
181 }
182 /* sort grid values in this direction */
183 sort_samples(sortord, ip, ang);
184 /* find nearest neighbors each side */
185 for (i = ip->ns; i--; ) {
186 const int ii = sortord[i].si;
187 int j;
188 /* preload with large radii */
189 ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
190 .5*(sortord[ip->ns-1].dm - sortord[0].dm));
191 for (j = i; ++j < ip->ns; ) /* nearest above */
192 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
193 leftrndx[sortord[j].si] < leftrndx[ii]) {
194 ip->da[ii][bd] = encode_diameter(ip,
195 sortord[j].dm - sortord[i].dm);
196 break;
197 }
198 for (j = i; j-- > 0; ) /* nearest below */
199 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
200 leftrndx[sortord[j].si] > leftrndx[ii]) {
201 ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
202 sortord[i].dm - sortord[j].dm);
203 break;
204 }
205 }
206 }
207 free(sortord); /* clean up */
208 free(rightrndx);
209 free(leftrndx);
210 free(endrndx);
211 return(1);
212 }
213
214 /* private call returns raw weight for a particular sample */
215 static double
216 get_wt(const INTERP2 *ip, const int i, double x, double y)
217 {
218 double dir, rd, d2;
219 int ri;
220 /* get relative direction */
221 x -= ip->spt[i][0];
222 y -= ip->spt[i][1];
223 dir = atan2a(y, x);
224 dir += 2.*PI*(dir < 0);
225 /* linear radius interpolation */
226 rd = dir * (NI2DIR/2./PI);
227 ri = (int)rd;
228 rd -= (double)ri;
229 rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR];
230 rd = ip->smf * DECODE_DIA(ip, rd);
231 d2 = x*x + y*y;
232 /* Gaussian times harmonic weighting */
233 return( exp(d2/(-2.*rd*rd)) * ip->dmin/(ip->dmin + sqrt(d2)) );
234 }
235
236 /* Assign full set of normalized weights to interpolate the given position */
237 int
238 interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
239 {
240 double wnorm;
241 int i;
242
243 if ((wtv == NULL) | (ip == NULL))
244 return(0);
245 /* need to compute interpolant? */
246 if (ip->da == NULL && !interp2_analyze(ip))
247 return(0);
248
249 wnorm = 0; /* compute raw weights */
250 for (i = ip->ns; i--; ) {
251 double wt = get_wt(ip, i, x, y);
252 wtv[i] = wt;
253 wnorm += wt;
254 }
255 if (wnorm <= 0) /* too far from all our samples! */
256 return(0);
257 wnorm = 1./wnorm; /* normalize weights */
258 for (i = ip->ns; i--; )
259 wtv[i] *= wnorm;
260 return(ip->ns); /* all done */
261 }
262
263
264 /* Get normalized weights and indexes for n best samples in descending order */
265 int
266 interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
267 {
268 int nn = 0;
269 double wnorm;
270 int i, j;
271
272 if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL))
273 return(0);
274 /* need to compute interpolant? */
275 if (ip->da == NULL && !interp2_analyze(ip))
276 return(0);
277 /* identify top n weights */
278 for (i = ip->ns; i--; ) {
279 const double wti = get_wt(ip, i, x, y);
280 for (j = nn; j > 0; j--) {
281 if (wt[j-1] >= wti)
282 break;
283 if (j < n) {
284 wt[j] = wt[j-1];
285 si[j] = si[j-1];
286 }
287 }
288 if (j < n) { /* add/insert sample */
289 wt[j] = wti;
290 si[j] = i;
291 nn += (nn < n);
292 }
293 }
294 wnorm = 0; /* normalize sample weights */
295 for (j = nn; j--; )
296 wnorm += wt[j];
297 if (wnorm <= 0)
298 return(0);
299 wnorm = 1./wnorm;
300 for (j = nn; j--; )
301 wt[j] *= wnorm;
302 return(nn); /* return actual # samples */
303 }
304
305 /* Free interpolant */
306 void
307 interp2_free(INTERP2 *ip)
308 {
309 if (ip == NULL)
310 return;
311 if (ip->da != NULL)
312 free(ip->da);
313 free(ip);
314 }