ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.2
Committed: Sat Feb 9 17:39:21 2013 UTC (11 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +69 -37 lines
Log Message:
Added interp2_realloc() call, exposed interp2_analyze() and code improvements

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: interp2d.c,v 2.1 2013/02/09 00:55:40 greg Exp $";
3 #endif
4 /*
5 * General interpolation method for unstructured values on 2-D plane.
6 *
7 * G.Ward Feb 2013
8 */
9
10 #include "copyright.h"
11
12 /*************************************************************
13 * This is a general method for 2-D interpolation similar to
14 * radial basis functions but allowing for a good deal of local
15 * anisotropy in the point distribution. Each sample point
16 * is examined to determine the closest neighboring samples in
17 * each of NI2DIR surrounding directions. To speed this
18 * calculation, we sort the data into 3 half-planes and
19 * perform simple tests to see which neighbor is closest in
20 * a each direction. Once we have our approximate neighborhood
21 * for a sample, we can use it in a Gaussian weighting scheme
22 * with anisotropic surround. This gives us a fairly smooth
23 * interpolation however the sample points may be initially
24 * distributed. Evaluation is accelerated by use of a fast
25 * approximation to the atan2(y,x) function.
26 **************************************************************/
27
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include "rtmath.h"
31 #include "interp2d.h"
32
33 #define DECODE_RAD(ip,er) ((ip)->rmin*(1. + .5*(er)))
34 #define ENCODE_RAD(ip,r) ((int)(2.*(r)/(ip)->rmin) - 2)
35
36 /* Sample order (private) */
37 typedef struct {
38 int si; /* sample index */
39 float dm; /* distance measure in this direction */
40 } SAMPORD;
41
42 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
43 INTERP2 *
44 interp2_alloc(int nsamps)
45 {
46 INTERP2 *nip;
47
48 if (nsamps <= 1)
49 return(NULL);
50
51 nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
52 if (nip == NULL)
53 return(NULL);
54
55 nip->ns = nsamps;
56 nip->rmin = .5; /* default radius minimum */
57 nip->smf = NI2DSMF; /* default smoothing factor */
58 nip->ra = NULL;
59 /* caller must assign spt[] array */
60 return(nip);
61 }
62
63 /* Resize interpolation array (caller must assign any new values) */
64 INTERP2 *
65 interp2_realloc(INTERP2 *ip, int nsamps)
66 {
67 if (ip == NULL)
68 return(interp2_alloc(nsamps));
69 if (nsamps <= 1) {
70 interp2_free(ip);
71 return(NULL);
72 }
73 if (nsamps == ip->ns);
74 return(ip);
75 if (ip->ra != NULL) { /* will need to recompute distribution */
76 free(ip->ra);
77 ip->ra = NULL;
78 }
79 ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
80 if (ip == NULL)
81 return(NULL);
82 ip->ns = nsamps;
83 return(ip);
84 }
85
86 /* private call-back to sort position index */
87 static int
88 cmp_spos(const void *p1, const void *p2)
89 {
90 const SAMPORD *so1 = (const SAMPORD *)p1;
91 const SAMPORD *so2 = (const SAMPORD *)p2;
92
93 if (so1->dm > so2->dm)
94 return 1;
95 if (so1->dm < so2->dm)
96 return -1;
97 return 0;
98 }
99
100 /* private routine to order samples in a particular direction */
101 static void
102 sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
103 {
104 const double cosd = cos(ang);
105 const double sind = sin(ang);
106 int i;
107
108 for (i = ip->ns; i--; ) {
109 sord[i].si = i;
110 sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
111 }
112 qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
113 }
114
115 /* private routine to encode radius with range checks */
116 static int
117 encode_radius(const INTERP2 *ip, double r)
118 {
119 const int er = ENCODE_RAD(ip, r);
120
121 if (er <= 0)
122 return(0);
123 if (er >= 0xffff)
124 return(0xffff);
125 return(er);
126 }
127
128 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
129 int
130 interp2_analyze(INTERP2 *ip)
131 {
132 SAMPORD *sortord;
133 int *rightrndx, *leftrndx, *endrndx;
134 int bd;
135 /* sanity checks */
136 if (ip == NULL || (ip->ns <= 1) | (ip->rmin <= 0))
137 return(0);
138 /* need to allocate? */
139 if (ip->ra == NULL) {
140 ip->ra = (unsigned short (*)[NI2DIR])malloc(
141 sizeof(unsigned short)*NI2DIR*ip->ns);
142 if (ip->ra == NULL)
143 return(0);
144 }
145 /* get temporary arrays */
146 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
147 rightrndx = (int *)malloc(sizeof(int)*ip->ns);
148 leftrndx = (int *)malloc(sizeof(int)*ip->ns);
149 endrndx = (int *)malloc(sizeof(int)*ip->ns);
150 if ((sortord == NULL) | (rightrndx == NULL) |
151 (leftrndx == NULL) | (endrndx == NULL))
152 return(0);
153 /* run through bidirections */
154 for (bd = 0; bd < NI2DIR/2; bd++) {
155 const double ang = 2.*PI/NI2DIR*bd;
156 int *sptr;
157 int i;
158 /* create right reverse index */
159 if (bd) { /* re-use from previous iteration? */
160 sptr = rightrndx;
161 rightrndx = leftrndx;
162 leftrndx = sptr;
163 } else { /* else sort first half-plane */
164 sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
165 for (i = ip->ns; i--; )
166 rightrndx[sortord[i].si] = i;
167 /* & store reverse order for later */
168 for (i = ip->ns; i--; )
169 endrndx[sortord[i].si] = ip->ns-1 - i;
170 }
171 /* create new left reverse index */
172 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
173 sptr = leftrndx;
174 leftrndx = endrndx;
175 endrndx = sptr;
176 } else { /* else compute new half-plane */
177 sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
178 for (i = ip->ns; i--; )
179 leftrndx[sortord[i].si] = i;
180 }
181 /* sort grid values in this direction */
182 sort_samples(sortord, ip, ang);
183 /* find nearest neighbors each side */
184 for (i = ip->ns; i--; ) {
185 const int rpos = rightrndx[sortord[i].si];
186 const int lpos = leftrndx[sortord[i].si];
187 int j;
188 /* preload with large radius */
189 ip->ra[i][bd] = ip->ra[i][bd+NI2DIR/2] = encode_radius(ip,
190 .25*(sortord[ip->ns-1].dm - sortord[0].dm));
191 for (j = i; ++j < ip->ns; ) /* nearest above */
192 if (rightrndx[sortord[j].si] > rpos &&
193 leftrndx[sortord[j].si] < lpos) {
194 ip->ra[i][bd] = encode_radius(ip,
195 .5*(sortord[j].dm - sortord[i].dm));
196 break;
197 }
198 for (j = i; j-- > 0; ) /* nearest below */
199 if (rightrndx[sortord[j].si] < rpos &&
200 leftrndx[sortord[j].si] > lpos) {
201 ip->ra[i][bd+NI2DIR/2] = encode_radius(ip,
202 .5*(sortord[i].dm - sortord[j].dm));
203 break;
204 }
205 }
206 }
207 free(sortord); /* clean up */
208 free(rightrndx);
209 free(leftrndx);
210 free(endrndx);
211 return(1);
212 }
213
214 /* private call returns log of raw weight for a particular sample */
215 static double
216 get_ln_wt(const INTERP2 *ip, const int i, double x, double y)
217 {
218 double dir, rd;
219 int ri;
220 /* get relative direction */
221 x -= ip->spt[i][0];
222 y -= ip->spt[i][1];
223 dir = atan2a(y, x);
224 dir += 2.*PI*(dir < 0);
225 /* linear radius interpolation */
226 rd = dir * (NI2DIR/2./PI);
227 ri = (int)rd;
228 rd -= (double)ri;
229 rd = (1.-rd)*ip->ra[i][ri] + rd*ip->ra[i][(ri+1)%NI2DIR];
230 rd = ip->smf * DECODE_RAD(ip, rd);
231 /* return log of Gaussian weight */
232 return( (x*x + y*y) / (-2.*rd*rd) );
233 }
234
235 /* Assign full set of normalized weights to interpolate the given position */
236 int
237 interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
238 {
239 double wnorm;
240 int i;
241
242 if ((wtv == NULL) | (ip == NULL))
243 return(0);
244 /* need to compute interpolant? */
245 if (ip->ra == NULL && !interp2_analyze(ip))
246 return(0);
247
248 wnorm = 0; /* compute raw weights */
249 for (i = ip->ns; i--; ) {
250 double wt = get_ln_wt(ip, i, x, y);
251 if (wt < -21.) {
252 wtv[i] = 0; /* ignore weights < 1e-9 */
253 continue;
254 }
255 wt = exp(wt); /* Gaussian weight */
256 wtv[i] = wt;
257 wnorm += wt;
258 }
259 if (wnorm <= 0) /* too far from all our samples! */
260 return(0);
261 wnorm = 1./wnorm; /* normalize weights */
262 for (i = ip->ns; i--; )
263 wtv[i] *= wnorm;
264 return(ip->ns); /* all done */
265 }
266
267
268 /* Get normalized weights and indexes for n best samples in descending order */
269 int
270 interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
271 {
272 int nn = 0;
273 double wnorm;
274 int i, j;
275
276 if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL))
277 return(0);
278 /* need to compute interpolant? */
279 if (ip->ra == NULL && !interp2_analyze(ip))
280 return(0);
281 /* identify top n weights */
282 for (i = ip->ns; i--; ) {
283 const double lnwt = get_ln_wt(ip, i, x, y);
284 for (j = nn; j > 0; j--) {
285 if (wt[j-1] >= lnwt)
286 break;
287 if (j < n) {
288 wt[j] = wt[j-1];
289 si[j] = si[j-1];
290 }
291 }
292 if (j < n) { /* add/insert sample */
293 wt[j] = lnwt;
294 si[j] = i;
295 nn += (nn < n);
296 }
297 }
298 wnorm = 0; /* exponentiate and normalize */
299 for (j = nn; j--; ) {
300 double dwt = exp(wt[j]);
301 wt[j] = dwt;
302 wnorm += dwt;
303 }
304 if (wnorm <= 0)
305 return(0);
306 wnorm = 1./wnorm;
307 for (j = nn; j--; )
308 wt[j] *= wnorm;
309 return(nn); /* return actual # samples */
310 }
311
312 /* Free interpolant */
313 void
314 interp2_free(INTERP2 *ip)
315 {
316 if (ip == NULL)
317 return;
318 if (ip->ra != NULL)
319 free(ip->ra);
320 free(ip);
321 }