#ifndef lint static const char RCSid[] = "$Id: interp2d.c,v 2.2 2013/02/09 17:39:21 greg Exp $"; #endif /* * General interpolation method for unstructured values on 2-D plane. * * G.Ward Feb 2013 */ #include "copyright.h" /************************************************************* * This is a general method for 2-D interpolation similar to * radial basis functions but allowing for a good deal of local * anisotropy in the point distribution. Each sample point * is examined to determine the closest neighboring samples in * each of NI2DIR surrounding directions. To speed this * calculation, we sort the data into 3 half-planes and * perform simple tests to see which neighbor is closest in * a each direction. Once we have our approximate neighborhood * for a sample, we can use it in a Gaussian weighting scheme * with anisotropic surround. This gives us a fairly smooth * interpolation however the sample points may be initially * distributed. Evaluation is accelerated by use of a fast * approximation to the atan2(y,x) function. **************************************************************/ #include #include #include "rtmath.h" #include "interp2d.h" #define DECODE_RAD(ip,er) ((ip)->rmin*(1. + .5*(er))) #define ENCODE_RAD(ip,r) ((int)(2.*(r)/(ip)->rmin) - 2) /* Sample order (private) */ typedef struct { int si; /* sample index */ float dm; /* distance measure in this direction */ } SAMPORD; /* Allocate a new set of interpolation samples (caller assigns spt[] array) */ INTERP2 * interp2_alloc(int nsamps) { INTERP2 *nip; if (nsamps <= 1) return(NULL); nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1)); if (nip == NULL) return(NULL); nip->ns = nsamps; nip->rmin = .5; /* default radius minimum */ nip->smf = NI2DSMF; /* default smoothing factor */ nip->ra = NULL; /* caller must assign spt[] array */ return(nip); } /* Resize interpolation array (caller must assign any new values) */ INTERP2 * interp2_realloc(INTERP2 *ip, int nsamps) { if (ip == NULL) return(interp2_alloc(nsamps)); if (nsamps <= 1) { interp2_free(ip); return(NULL); } if (nsamps == ip->ns); return(ip); if (ip->ra != NULL) { /* will need to recompute distribution */ free(ip->ra); ip->ra = NULL; } ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); if (ip == NULL) return(NULL); ip->ns = nsamps; return(ip); } /* private call-back to sort position index */ static int cmp_spos(const void *p1, const void *p2) { const SAMPORD *so1 = (const SAMPORD *)p1; const SAMPORD *so2 = (const SAMPORD *)p2; if (so1->dm > so2->dm) return 1; if (so1->dm < so2->dm) return -1; return 0; } /* private routine to order samples in a particular direction */ static void sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang) { const double cosd = cos(ang); const double sind = sin(ang); int i; for (i = ip->ns; i--; ) { sord[i].si = i; sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; } qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); } /* private routine to encode radius with range checks */ static int encode_radius(const INTERP2 *ip, double r) { const int er = ENCODE_RAD(ip, r); if (er <= 0) return(0); if (er >= 0xffff) return(0xffff); return(er); } /* (Re)compute anisotropic basis function interpolant (normally automatic) */ int interp2_analyze(INTERP2 *ip) { SAMPORD *sortord; int *rightrndx, *leftrndx, *endrndx; int bd; /* sanity checks */ if (ip == NULL || (ip->ns <= 1) | (ip->rmin <= 0)) return(0); /* need to allocate? */ if (ip->ra == NULL) { ip->ra = (unsigned short (*)[NI2DIR])malloc( sizeof(unsigned short)*NI2DIR*ip->ns); if (ip->ra == NULL) return(0); } /* get temporary arrays */ sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns); rightrndx = (int *)malloc(sizeof(int)*ip->ns); leftrndx = (int *)malloc(sizeof(int)*ip->ns); endrndx = (int *)malloc(sizeof(int)*ip->ns); if ((sortord == NULL) | (rightrndx == NULL) | (leftrndx == NULL) | (endrndx == NULL)) return(0); /* run through bidirections */ for (bd = 0; bd < NI2DIR/2; bd++) { const double ang = 2.*PI/NI2DIR*bd; int *sptr; int i; /* create right reverse index */ if (bd) { /* re-use from previous iteration? */ sptr = rightrndx; rightrndx = leftrndx; leftrndx = sptr; } else { /* else sort first half-plane */ sort_samples(sortord, ip, PI/2. - PI/NI2DIR); for (i = ip->ns; i--; ) rightrndx[sortord[i].si] = i; /* & store reverse order for later */ for (i = ip->ns; i--; ) endrndx[sortord[i].si] = ip->ns-1 - i; } /* create new left reverse index */ if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */ sptr = leftrndx; leftrndx = endrndx; endrndx = sptr; } else { /* else compute new half-plane */ sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR)); for (i = ip->ns; i--; ) leftrndx[sortord[i].si] = i; } /* sort grid values in this direction */ sort_samples(sortord, ip, ang); /* find nearest neighbors each side */ for (i = ip->ns; i--; ) { const int rpos = rightrndx[sortord[i].si]; const int lpos = leftrndx[sortord[i].si]; int j; /* preload with large radius */ ip->ra[i][bd] = ip->ra[i][bd+NI2DIR/2] = encode_radius(ip, .25*(sortord[ip->ns-1].dm - sortord[0].dm)); for (j = i; ++j < ip->ns; ) /* nearest above */ if (rightrndx[sortord[j].si] > rpos && leftrndx[sortord[j].si] < lpos) { ip->ra[i][bd] = encode_radius(ip, .5*(sortord[j].dm - sortord[i].dm)); break; } for (j = i; j-- > 0; ) /* nearest below */ if (rightrndx[sortord[j].si] < rpos && leftrndx[sortord[j].si] > lpos) { ip->ra[i][bd+NI2DIR/2] = encode_radius(ip, .5*(sortord[i].dm - sortord[j].dm)); break; } } } free(sortord); /* clean up */ free(rightrndx); free(leftrndx); free(endrndx); return(1); } /* private call returns log of raw weight for a particular sample */ static double get_ln_wt(const INTERP2 *ip, const int i, double x, double y) { double dir, rd; int ri; /* get relative direction */ x -= ip->spt[i][0]; y -= ip->spt[i][1]; dir = atan2a(y, x); dir += 2.*PI*(dir < 0); /* linear radius interpolation */ rd = dir * (NI2DIR/2./PI); ri = (int)rd; rd -= (double)ri; rd = (1.-rd)*ip->ra[i][ri] + rd*ip->ra[i][(ri+1)%NI2DIR]; rd = ip->smf * DECODE_RAD(ip, rd); /* return log of Gaussian weight */ return( (x*x + y*y) / (-2.*rd*rd) ); } /* Assign full set of normalized weights to interpolate the given position */ int interp2_weights(float wtv[], INTERP2 *ip, double x, double y) { double wnorm; int i; if ((wtv == NULL) | (ip == NULL)) return(0); /* need to compute interpolant? */ if (ip->ra == NULL && !interp2_analyze(ip)) return(0); wnorm = 0; /* compute raw weights */ for (i = ip->ns; i--; ) { double wt = get_ln_wt(ip, i, x, y); if (wt < -21.) { wtv[i] = 0; /* ignore weights < 1e-9 */ continue; } wt = exp(wt); /* Gaussian weight */ wtv[i] = wt; wnorm += wt; } if (wnorm <= 0) /* too far from all our samples! */ return(0); wnorm = 1./wnorm; /* normalize weights */ for (i = ip->ns; i--; ) wtv[i] *= wnorm; return(ip->ns); /* all done */ } /* Get normalized weights and indexes for n best samples in descending order */ int interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y) { int nn = 0; double wnorm; int i, j; if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) return(0); /* need to compute interpolant? */ if (ip->ra == NULL && !interp2_analyze(ip)) return(0); /* identify top n weights */ for (i = ip->ns; i--; ) { const double lnwt = get_ln_wt(ip, i, x, y); for (j = nn; j > 0; j--) { if (wt[j-1] >= lnwt) break; if (j < n) { wt[j] = wt[j-1]; si[j] = si[j-1]; } } if (j < n) { /* add/insert sample */ wt[j] = lnwt; si[j] = i; nn += (nn < n); } } wnorm = 0; /* exponentiate and normalize */ for (j = nn; j--; ) { double dwt = exp(wt[j]); wt[j] = dwt; wnorm += dwt; } if (wnorm <= 0) return(0); wnorm = 1./wnorm; for (j = nn; j--; ) wt[j] *= wnorm; return(nn); /* return actual # samples */ } /* Free interpolant */ void interp2_free(INTERP2 *ip) { if (ip == NULL) return; if (ip->ra != NULL) free(ip->ra); free(ip); }