ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.15
Committed: Sat Feb 13 16:49:18 2021 UTC (4 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.14: +2 -1 lines
Log Message:
feat: added client data pointer for caller convenience

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: interp2d.c,v 2.14 2014/06/06 00:56:42 greg Exp $";
3 #endif
4 /*
5 * General interpolation method for unstructured values on 2-D plane.
6 *
7 * G.Ward Feb 2013
8 */
9
10 #include "copyright.h"
11
12 /***************************************************************
13 * This is a general method for 2-D interpolation similar to
14 * radial basis functions but allowing for a good deal of local
15 * anisotropy in the point distribution. Each sample point
16 * is examined to determine the closest neighboring samples in
17 * each of NI2DIR surrounding directions. To speed this
18 * calculation, we sort the data into half-planes and apply
19 * simple tests to see which neighbor is closest in each
20 * angular slice. Once we have our approximate neighborhood
21 * for a sample, we can use it in a modified Gaussian weighting
22 * with allowing local anisotropy. Harmonic weighting is added
23 * to reduce the influence of distant neighbors. This yields a
24 * smooth interpolation regardless of how the sample points are
25 * initially distributed. Evaluation is accelerated by use of
26 * a fast approximation to the atan2(y,x) function and a low-res
27 * map indicating where sample weights are significant.
28 ****************************************************************/
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include "rtmath.h"
33 #include "interp2d.h"
34
35 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36 #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37
38 /* Sample order (private) */
39 typedef struct {
40 int si; /* sample index */
41 float dm; /* distance measure in this direction */
42 } SAMPORD;
43
44 /* private routine to encode sample diameter with range checks */
45 static int
46 encode_diameter(const INTERP2 *ip, double d)
47 {
48 const int ed = ENCODE_DIA(ip, d);
49
50 if (ed <= 0)
51 return(0);
52 if (ed >= 0xffff)
53 return(0xffff);
54 return(ed);
55 }
56
57 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
58 INTERP2 *
59 interp2_alloc(int nsamps)
60 {
61 INTERP2 *nip;
62
63 if (nsamps <= 1)
64 return(NULL);
65
66 nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
67 if (nip == NULL)
68 return(NULL);
69
70 nip->ns = nsamps;
71 nip->dmin = 1; /* default minimum diameter */
72 nip->smf = NI2DSMF; /* default smoothing factor */
73 nip->c_data = NULL;
74 nip->da = NULL;
75 /* caller must assign spt[] array */
76 return(nip);
77 }
78
79 /* Resize interpolation array (caller must assign any new values) */
80 INTERP2 *
81 interp2_realloc(INTERP2 *ip, int nsamps)
82 {
83 if (ip == NULL)
84 return(interp2_alloc(nsamps));
85 if (nsamps <= 1) {
86 interp2_free(ip);
87 return(NULL);
88 }
89 if (nsamps == ip->ns)
90 return(ip);
91 if (ip->da != NULL) { /* will need to recompute distribution */
92 free(ip->da);
93 ip->da = NULL;
94 }
95 ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
96 if (ip == NULL)
97 return(NULL);
98 ip->ns = nsamps;
99 return(ip);
100 }
101
102 /* Set minimum distance under which samples will start to merge */
103 void
104 interp2_spacing(INTERP2 *ip, double mind)
105 {
106 if (mind <= 0)
107 return;
108 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
109 return;
110 if (ip->da != NULL) { /* will need to recompute distribution */
111 free(ip->da);
112 ip->da = NULL;
113 }
114 ip->dmin = mind;
115 }
116
117 /* Compute unnormalized weight for a position relative to a sample */
118 double
119 interp2_wti(INTERP2 *ip, const int i, double x, double y)
120 {
121 double dir, rd, r2, d2;
122 int ri;
123 /* get relative direction */
124 x -= ip->spt[i][0];
125 y -= ip->spt[i][1];
126 dir = atan2a(y, x);
127 dir += 2.*PI*(dir < 0);
128 /* linear radius interpolation */
129 rd = dir * (NI2DIR/2./PI);
130 ri = (int)rd;
131 rd -= (double)ri;
132 rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
133 rd = ip->smf * DECODE_DIA(ip, rd);
134 r2 = 2.*rd*rd;
135 d2 = x*x + y*y;
136 if (d2 > 21.*r2) /* result would be < 1e-9 */
137 return(.0);
138 /* Gaussian times harmonic weighting */
139 return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
140 }
141
142 /* private call to get grid flag index */
143 static int
144 interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
145 {
146 int inbounds = 0;
147
148 if (ip == NULL) /* paranoia */
149 return(-1);
150 /* need to compute interpolant? */
151 if (ip->da == NULL && !interp2_analyze(ip))
152 return(-1);
153 /* get x & y grid positions */
154 fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
155
156 if (fgi[0] >= NI2DIM)
157 fgi[0] = NI2DIM-1;
158 else if (fgi[0] < 0)
159 fgi[0] = 0;
160 else
161 ++inbounds;
162
163 fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
164
165 if (fgi[1] >= NI2DIM)
166 fgi[1] = NI2DIM-1;
167 else if (fgi[1] < 0)
168 fgi[1] = 0;
169 else
170 ++inbounds;
171
172 return(inbounds == 2);
173 }
174
175 #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
176
177 #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
178
179 /* private flood function to determine sample influence */
180 static void
181 influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
182 int xfi, int yfi)
183 {
184 double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
185 ip->smin[0];
186 double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
187 ip->smin[1];
188 double dx = gx - ip->spt[i][0];
189 double dy = gy - ip->spt[i][1];
190
191 setflg(visited, xfi, yfi);
192
193 if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
194 return;
195
196 setflg(ip->da[i].infl, xfi, yfi);
197
198 if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
199 influence_flood(ip, i, visited, xfi-1, yfi);
200
201 if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
202 influence_flood(ip, i, visited, xfi, yfi-1);
203
204 if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
205 influence_flood(ip, i, visited, xfi+1, yfi);
206
207 if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
208 influence_flood(ip, i, visited, xfi, yfi+1);
209 }
210
211 /* private call to compute sample influence maps */
212 static void
213 map_influence(INTERP2 *ip)
214 {
215 unsigned short visited[NI2DIM];
216 int fgi[2];
217 int i, j;
218
219 for (i = ip->ns; i--; ) {
220 for (j = NI2DIM; j--; ) {
221 ip->da[i].infl[j] = 0;
222 visited[j] = 0;
223 }
224 interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
225
226 influence_flood(ip, i, visited, fgi[0], fgi[1]);
227 }
228 }
229
230 /* Modify smoothing parameter by the given factor */
231 void
232 interp2_smooth(INTERP2 *ip, double sf)
233 {
234 float old_smf = ip->smf;
235
236 if ((ip->smf *= sf) < NI2DSMF)
237 ip->smf = NI2DSMF;
238 /* need to recompute influence maps? */
239 if (ip->da != NULL && (old_smf*.85 > ip->smf) |
240 (ip->smf > old_smf*1.15))
241 map_influence(ip);
242 }
243
244 /* private call-back to sort position index */
245 static int
246 cmp_spos(const void *p1, const void *p2)
247 {
248 const SAMPORD *so1 = (const SAMPORD *)p1;
249 const SAMPORD *so2 = (const SAMPORD *)p2;
250
251 if (so1->dm > so2->dm)
252 return 1;
253 if (so1->dm < so2->dm)
254 return -1;
255 return 0;
256 }
257
258 /* private routine to order samples in a particular direction */
259 static void
260 sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
261 {
262 const double cosd = cos(ang);
263 const double sind = sin(ang);
264 int i;
265
266 for (i = ip->ns; i--; ) {
267 sord[i].si = i;
268 sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
269 }
270 qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos);
271 }
272
273 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
274 int
275 interp2_analyze(INTERP2 *ip)
276 {
277 SAMPORD *sortord;
278 int *rightrndx, *leftrndx, *endrndx;
279 int i, bd;
280 /* sanity checks */
281 if (ip == NULL)
282 return(0);
283 if (ip->da != NULL) { /* free previous data if any */
284 free(ip->da);
285 ip->da = NULL;
286 }
287 if ((ip->ns <= 1) | (ip->dmin <= 0))
288 return(0);
289 /* compute sample domain */
290 ip->smin[0] = ip->smin[1] = FHUGE;
291 ip->smax[0] = ip->smax[1] = -FHUGE;
292 for (i = ip->ns; i--; ) {
293 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
294 if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
295 if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
296 if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
297 }
298 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
299 (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
300 (1./NI2DIM/NI2DIM);
301 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
302 return(0);
303 /* allocate analysis data */
304 ip->da = (struct interp2_samp *)malloc(
305 sizeof(struct interp2_samp)*ip->ns );
306 if (ip->da == NULL)
307 return(0);
308 /* allocate temporary arrays */
309 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
310 rightrndx = (int *)malloc(sizeof(int)*ip->ns);
311 leftrndx = (int *)malloc(sizeof(int)*ip->ns);
312 endrndx = (int *)malloc(sizeof(int)*ip->ns);
313 if ((sortord == NULL) | (rightrndx == NULL) |
314 (leftrndx == NULL) | (endrndx == NULL))
315 return(0);
316 /* run through bidirections */
317 for (bd = 0; bd < NI2DIR/2; bd++) {
318 const double ang = 2.*PI/NI2DIR*bd;
319 int *sptr;
320 /* create right reverse index */
321 if (bd) { /* re-use from previous iteration? */
322 sptr = rightrndx;
323 rightrndx = leftrndx;
324 leftrndx = sptr;
325 } else { /* else sort first half-plane */
326 sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
327 for (i = ip->ns; i--; )
328 rightrndx[sortord[i].si] = i;
329 /* & store reverse order for later */
330 for (i = ip->ns; i--; )
331 endrndx[sortord[i].si] = ip->ns-1 - i;
332 }
333 /* create new left reverse index */
334 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
335 sptr = leftrndx;
336 leftrndx = endrndx;
337 endrndx = sptr;
338 } else { /* else compute new half-plane */
339 sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
340 for (i = ip->ns; i--; )
341 leftrndx[sortord[i].si] = i;
342 }
343 /* sort grid values in this direction */
344 sort_samples(sortord, ip, ang);
345 /* find nearest neighbors each side */
346 for (i = ip->ns; i--; ) {
347 const int ii = sortord[i].si;
348 int j;
349 /* preload with large radii */
350 ip->da[ii].dia[bd] =
351 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
352 .5*(sortord[ip->ns-1].dm - sortord[0].dm));
353 for (j = i; ++j < ip->ns; ) /* nearest above */
354 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
355 leftrndx[sortord[j].si] < leftrndx[ii]) {
356 ip->da[ii].dia[bd] = encode_diameter(ip,
357 sortord[j].dm - sortord[i].dm);
358 break;
359 }
360 for (j = i; j-- > 0; ) /* nearest below */
361 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
362 leftrndx[sortord[j].si] > leftrndx[ii]) {
363 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
364 sortord[i].dm - sortord[j].dm);
365 break;
366 }
367 }
368 }
369 free(sortord); /* release temp arrays */
370 free(rightrndx);
371 free(leftrndx);
372 free(endrndx);
373 /* map sample influence areas */
374 map_influence(ip);
375 return(1); /* all done */
376 }
377
378 /* Assign full set of normalized weights to interpolate the given position */
379 int
380 interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
381 {
382 double wnorm;
383 int fgi[2];
384 int i;
385
386 if (wtv == NULL)
387 return(0);
388 /* get flag position */
389 if (interp2_flagpos(fgi, ip, x, y) < 0)
390 return(0);
391
392 wnorm = 0; /* compute raw weights */
393 for (i = ip->ns; i--; )
394 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
395 double wt = interp2_wti(ip, i, x, y);
396 wtv[i] = wt;
397 wnorm += wt;
398 } else
399 wtv[i] = 0;
400 if (wnorm <= 0) /* too far from all our samples! */
401 return(0);
402 wnorm = 1./wnorm; /* normalize weights */
403 for (i = ip->ns; i--; )
404 wtv[i] *= wnorm;
405 return(ip->ns); /* all done */
406 }
407
408
409 /* Get normalized weights and indexes for n best samples in descending order */
410 int
411 interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
412 {
413 int nn = 0;
414 int fgi[2];
415 double wnorm;
416 int i, j;
417
418 if ((n <= 0) | (wt == NULL) | (si == NULL))
419 return(0);
420 /* get flag position */
421 if (interp2_flagpos(fgi, ip, x, y) < 0)
422 return(0);
423 /* identify top n weights */
424 for (i = ip->ns; i--; )
425 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
426 const double wti = interp2_wti(ip, i, x, y);
427 for (j = nn; j > 0; j--) {
428 if (wt[j-1] >= wti)
429 break;
430 if (j < n) {
431 wt[j] = wt[j-1];
432 si[j] = si[j-1];
433 }
434 }
435 if (j < n) { /* add/insert sample */
436 wt[j] = wti;
437 si[j] = i;
438 nn += (nn < n);
439 }
440 }
441 wnorm = 0; /* normalize sample weights */
442 for (j = nn; j--; )
443 wnorm += wt[j];
444 if (wnorm <= 0)
445 return(0);
446 wnorm = 1./wnorm;
447 for (j = nn; j--; )
448 wt[j] *= wnorm;
449 return(nn); /* return actual # samples */
450 }
451
452 /* Free interpolant */
453 void
454 interp2_free(INTERP2 *ip)
455 {
456 if (ip == NULL)
457 return;
458 if (ip->da != NULL)
459 free(ip->da);
460 free(ip);
461 }