ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.14
Committed: Fri Jun 6 00:56:42 2014 UTC (9 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad4R2P2, rad5R0, rad5R1, rad4R2, rad4R2P1, rad5R3
Changes since 2.13: +2 -2 lines
Log Message:
Removed address operator not needed for function pointer

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: interp2d.c,v 2.13 2013/02/16 00:41:12 greg Exp $";
3 #endif
4 /*
5 * General interpolation method for unstructured values on 2-D plane.
6 *
7 * G.Ward Feb 2013
8 */
9
10 #include "copyright.h"
11
12 /***************************************************************
13 * This is a general method for 2-D interpolation similar to
14 * radial basis functions but allowing for a good deal of local
15 * anisotropy in the point distribution. Each sample point
16 * is examined to determine the closest neighboring samples in
17 * each of NI2DIR surrounding directions. To speed this
18 * calculation, we sort the data into half-planes and apply
19 * simple tests to see which neighbor is closest in each
20 * angular slice. Once we have our approximate neighborhood
21 * for a sample, we can use it in a modified Gaussian weighting
22 * with allowing local anisotropy. Harmonic weighting is added
23 * to reduce the influence of distant neighbors. This yields a
24 * smooth interpolation regardless of how the sample points are
25 * initially distributed. Evaluation is accelerated by use of
26 * a fast approximation to the atan2(y,x) function and a low-res
27 * map indicating where sample weights are significant.
28 ****************************************************************/
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include "rtmath.h"
33 #include "interp2d.h"
34
35 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36 #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37
38 /* Sample order (private) */
39 typedef struct {
40 int si; /* sample index */
41 float dm; /* distance measure in this direction */
42 } SAMPORD;
43
44 /* private routine to encode sample diameter with range checks */
45 static int
46 encode_diameter(const INTERP2 *ip, double d)
47 {
48 const int ed = ENCODE_DIA(ip, d);
49
50 if (ed <= 0)
51 return(0);
52 if (ed >= 0xffff)
53 return(0xffff);
54 return(ed);
55 }
56
57 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
58 INTERP2 *
59 interp2_alloc(int nsamps)
60 {
61 INTERP2 *nip;
62
63 if (nsamps <= 1)
64 return(NULL);
65
66 nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
67 if (nip == NULL)
68 return(NULL);
69
70 nip->ns = nsamps;
71 nip->dmin = 1; /* default minimum diameter */
72 nip->smf = NI2DSMF; /* default smoothing factor */
73 nip->da = NULL;
74 /* caller must assign spt[] array */
75 return(nip);
76 }
77
78 /* Resize interpolation array (caller must assign any new values) */
79 INTERP2 *
80 interp2_realloc(INTERP2 *ip, int nsamps)
81 {
82 if (ip == NULL)
83 return(interp2_alloc(nsamps));
84 if (nsamps <= 1) {
85 interp2_free(ip);
86 return(NULL);
87 }
88 if (nsamps == ip->ns)
89 return(ip);
90 if (ip->da != NULL) { /* will need to recompute distribution */
91 free(ip->da);
92 ip->da = NULL;
93 }
94 ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
95 if (ip == NULL)
96 return(NULL);
97 ip->ns = nsamps;
98 return(ip);
99 }
100
101 /* Set minimum distance under which samples will start to merge */
102 void
103 interp2_spacing(INTERP2 *ip, double mind)
104 {
105 if (mind <= 0)
106 return;
107 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
108 return;
109 if (ip->da != NULL) { /* will need to recompute distribution */
110 free(ip->da);
111 ip->da = NULL;
112 }
113 ip->dmin = mind;
114 }
115
116 /* Compute unnormalized weight for a position relative to a sample */
117 double
118 interp2_wti(INTERP2 *ip, const int i, double x, double y)
119 {
120 double dir, rd, r2, d2;
121 int ri;
122 /* get relative direction */
123 x -= ip->spt[i][0];
124 y -= ip->spt[i][1];
125 dir = atan2a(y, x);
126 dir += 2.*PI*(dir < 0);
127 /* linear radius interpolation */
128 rd = dir * (NI2DIR/2./PI);
129 ri = (int)rd;
130 rd -= (double)ri;
131 rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
132 rd = ip->smf * DECODE_DIA(ip, rd);
133 r2 = 2.*rd*rd;
134 d2 = x*x + y*y;
135 if (d2 > 21.*r2) /* result would be < 1e-9 */
136 return(.0);
137 /* Gaussian times harmonic weighting */
138 return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
139 }
140
141 /* private call to get grid flag index */
142 static int
143 interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
144 {
145 int inbounds = 0;
146
147 if (ip == NULL) /* paranoia */
148 return(-1);
149 /* need to compute interpolant? */
150 if (ip->da == NULL && !interp2_analyze(ip))
151 return(-1);
152 /* get x & y grid positions */
153 fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
154
155 if (fgi[0] >= NI2DIM)
156 fgi[0] = NI2DIM-1;
157 else if (fgi[0] < 0)
158 fgi[0] = 0;
159 else
160 ++inbounds;
161
162 fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
163
164 if (fgi[1] >= NI2DIM)
165 fgi[1] = NI2DIM-1;
166 else if (fgi[1] < 0)
167 fgi[1] = 0;
168 else
169 ++inbounds;
170
171 return(inbounds == 2);
172 }
173
174 #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
175
176 #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
177
178 /* private flood function to determine sample influence */
179 static void
180 influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
181 int xfi, int yfi)
182 {
183 double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
184 ip->smin[0];
185 double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
186 ip->smin[1];
187 double dx = gx - ip->spt[i][0];
188 double dy = gy - ip->spt[i][1];
189
190 setflg(visited, xfi, yfi);
191
192 if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
193 return;
194
195 setflg(ip->da[i].infl, xfi, yfi);
196
197 if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
198 influence_flood(ip, i, visited, xfi-1, yfi);
199
200 if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
201 influence_flood(ip, i, visited, xfi, yfi-1);
202
203 if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
204 influence_flood(ip, i, visited, xfi+1, yfi);
205
206 if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
207 influence_flood(ip, i, visited, xfi, yfi+1);
208 }
209
210 /* private call to compute sample influence maps */
211 static void
212 map_influence(INTERP2 *ip)
213 {
214 unsigned short visited[NI2DIM];
215 int fgi[2];
216 int i, j;
217
218 for (i = ip->ns; i--; ) {
219 for (j = NI2DIM; j--; ) {
220 ip->da[i].infl[j] = 0;
221 visited[j] = 0;
222 }
223 interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
224
225 influence_flood(ip, i, visited, fgi[0], fgi[1]);
226 }
227 }
228
229 /* Modify smoothing parameter by the given factor */
230 void
231 interp2_smooth(INTERP2 *ip, double sf)
232 {
233 float old_smf = ip->smf;
234
235 if ((ip->smf *= sf) < NI2DSMF)
236 ip->smf = NI2DSMF;
237 /* need to recompute influence maps? */
238 if (ip->da != NULL && (old_smf*.85 > ip->smf) |
239 (ip->smf > old_smf*1.15))
240 map_influence(ip);
241 }
242
243 /* private call-back to sort position index */
244 static int
245 cmp_spos(const void *p1, const void *p2)
246 {
247 const SAMPORD *so1 = (const SAMPORD *)p1;
248 const SAMPORD *so2 = (const SAMPORD *)p2;
249
250 if (so1->dm > so2->dm)
251 return 1;
252 if (so1->dm < so2->dm)
253 return -1;
254 return 0;
255 }
256
257 /* private routine to order samples in a particular direction */
258 static void
259 sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
260 {
261 const double cosd = cos(ang);
262 const double sind = sin(ang);
263 int i;
264
265 for (i = ip->ns; i--; ) {
266 sord[i].si = i;
267 sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
268 }
269 qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos);
270 }
271
272 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
273 int
274 interp2_analyze(INTERP2 *ip)
275 {
276 SAMPORD *sortord;
277 int *rightrndx, *leftrndx, *endrndx;
278 int i, bd;
279 /* sanity checks */
280 if (ip == NULL)
281 return(0);
282 if (ip->da != NULL) { /* free previous data if any */
283 free(ip->da);
284 ip->da = NULL;
285 }
286 if ((ip->ns <= 1) | (ip->dmin <= 0))
287 return(0);
288 /* compute sample domain */
289 ip->smin[0] = ip->smin[1] = FHUGE;
290 ip->smax[0] = ip->smax[1] = -FHUGE;
291 for (i = ip->ns; i--; ) {
292 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
293 if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
294 if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
295 if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
296 }
297 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
298 (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
299 (1./NI2DIM/NI2DIM);
300 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
301 return(0);
302 /* allocate analysis data */
303 ip->da = (struct interp2_samp *)malloc(
304 sizeof(struct interp2_samp)*ip->ns );
305 if (ip->da == NULL)
306 return(0);
307 /* allocate temporary arrays */
308 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
309 rightrndx = (int *)malloc(sizeof(int)*ip->ns);
310 leftrndx = (int *)malloc(sizeof(int)*ip->ns);
311 endrndx = (int *)malloc(sizeof(int)*ip->ns);
312 if ((sortord == NULL) | (rightrndx == NULL) |
313 (leftrndx == NULL) | (endrndx == NULL))
314 return(0);
315 /* run through bidirections */
316 for (bd = 0; bd < NI2DIR/2; bd++) {
317 const double ang = 2.*PI/NI2DIR*bd;
318 int *sptr;
319 /* create right reverse index */
320 if (bd) { /* re-use from previous iteration? */
321 sptr = rightrndx;
322 rightrndx = leftrndx;
323 leftrndx = sptr;
324 } else { /* else sort first half-plane */
325 sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
326 for (i = ip->ns; i--; )
327 rightrndx[sortord[i].si] = i;
328 /* & store reverse order for later */
329 for (i = ip->ns; i--; )
330 endrndx[sortord[i].si] = ip->ns-1 - i;
331 }
332 /* create new left reverse index */
333 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
334 sptr = leftrndx;
335 leftrndx = endrndx;
336 endrndx = sptr;
337 } else { /* else compute new half-plane */
338 sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
339 for (i = ip->ns; i--; )
340 leftrndx[sortord[i].si] = i;
341 }
342 /* sort grid values in this direction */
343 sort_samples(sortord, ip, ang);
344 /* find nearest neighbors each side */
345 for (i = ip->ns; i--; ) {
346 const int ii = sortord[i].si;
347 int j;
348 /* preload with large radii */
349 ip->da[ii].dia[bd] =
350 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
351 .5*(sortord[ip->ns-1].dm - sortord[0].dm));
352 for (j = i; ++j < ip->ns; ) /* nearest above */
353 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
354 leftrndx[sortord[j].si] < leftrndx[ii]) {
355 ip->da[ii].dia[bd] = encode_diameter(ip,
356 sortord[j].dm - sortord[i].dm);
357 break;
358 }
359 for (j = i; j-- > 0; ) /* nearest below */
360 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
361 leftrndx[sortord[j].si] > leftrndx[ii]) {
362 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
363 sortord[i].dm - sortord[j].dm);
364 break;
365 }
366 }
367 }
368 free(sortord); /* release temp arrays */
369 free(rightrndx);
370 free(leftrndx);
371 free(endrndx);
372 /* map sample influence areas */
373 map_influence(ip);
374 return(1); /* all done */
375 }
376
377 /* Assign full set of normalized weights to interpolate the given position */
378 int
379 interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
380 {
381 double wnorm;
382 int fgi[2];
383 int i;
384
385 if (wtv == NULL)
386 return(0);
387 /* get flag position */
388 if (interp2_flagpos(fgi, ip, x, y) < 0)
389 return(0);
390
391 wnorm = 0; /* compute raw weights */
392 for (i = ip->ns; i--; )
393 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
394 double wt = interp2_wti(ip, i, x, y);
395 wtv[i] = wt;
396 wnorm += wt;
397 } else
398 wtv[i] = 0;
399 if (wnorm <= 0) /* too far from all our samples! */
400 return(0);
401 wnorm = 1./wnorm; /* normalize weights */
402 for (i = ip->ns; i--; )
403 wtv[i] *= wnorm;
404 return(ip->ns); /* all done */
405 }
406
407
408 /* Get normalized weights and indexes for n best samples in descending order */
409 int
410 interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
411 {
412 int nn = 0;
413 int fgi[2];
414 double wnorm;
415 int i, j;
416
417 if ((n <= 0) | (wt == NULL) | (si == NULL))
418 return(0);
419 /* get flag position */
420 if (interp2_flagpos(fgi, ip, x, y) < 0)
421 return(0);
422 /* identify top n weights */
423 for (i = ip->ns; i--; )
424 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
425 const double wti = interp2_wti(ip, i, x, y);
426 for (j = nn; j > 0; j--) {
427 if (wt[j-1] >= wti)
428 break;
429 if (j < n) {
430 wt[j] = wt[j-1];
431 si[j] = si[j-1];
432 }
433 }
434 if (j < n) { /* add/insert sample */
435 wt[j] = wti;
436 si[j] = i;
437 nn += (nn < n);
438 }
439 }
440 wnorm = 0; /* normalize sample weights */
441 for (j = nn; j--; )
442 wnorm += wt[j];
443 if (wnorm <= 0)
444 return(0);
445 wnorm = 1./wnorm;
446 for (j = nn; j--; )
447 wt[j] *= wnorm;
448 return(nn); /* return actual # samples */
449 }
450
451 /* Free interpolant */
452 void
453 interp2_free(INTERP2 *ip)
454 {
455 if (ip == NULL)
456 return;
457 if (ip->da != NULL)
458 free(ip->da);
459 free(ip);
460 }