#ifndef lint static const char RCSid[] = "$Id: interp2d.c,v 2.14 2014/06/06 00:56:42 greg Exp $"; #endif /* * General interpolation method for unstructured values on 2-D plane. * * G.Ward Feb 2013 */ #include "copyright.h" /*************************************************************** * This is a general method for 2-D interpolation similar to * radial basis functions but allowing for a good deal of local * anisotropy in the point distribution. Each sample point * is examined to determine the closest neighboring samples in * each of NI2DIR surrounding directions. To speed this * calculation, we sort the data into half-planes and apply * simple tests to see which neighbor is closest in each * angular slice. Once we have our approximate neighborhood * for a sample, we can use it in a modified Gaussian weighting * with allowing local anisotropy. Harmonic weighting is added * to reduce the influence of distant neighbors. This yields a * smooth interpolation regardless of how the sample points are * initially distributed. Evaluation is accelerated by use of * a fast approximation to the atan2(y,x) function and a low-res * map indicating where sample weights are significant. ****************************************************************/ #include #include #include "rtmath.h" #include "interp2d.h" #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed))) #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2) /* Sample order (private) */ typedef struct { int si; /* sample index */ float dm; /* distance measure in this direction */ } SAMPORD; /* private routine to encode sample diameter with range checks */ static int encode_diameter(const INTERP2 *ip, double d) { const int ed = ENCODE_DIA(ip, d); if (ed <= 0) return(0); if (ed >= 0xffff) return(0xffff); return(ed); } /* Allocate a new set of interpolation samples (caller assigns spt[] array) */ INTERP2 * interp2_alloc(int nsamps) { INTERP2 *nip; if (nsamps <= 1) return(NULL); nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1)); if (nip == NULL) return(NULL); nip->ns = nsamps; nip->dmin = 1; /* default minimum diameter */ nip->smf = NI2DSMF; /* default smoothing factor */ nip->da = NULL; /* caller must assign spt[] array */ return(nip); } /* Resize interpolation array (caller must assign any new values) */ INTERP2 * interp2_realloc(INTERP2 *ip, int nsamps) { if (ip == NULL) return(interp2_alloc(nsamps)); if (nsamps <= 1) { interp2_free(ip); return(NULL); } if (nsamps == ip->ns) return(ip); if (ip->da != NULL) { /* will need to recompute distribution */ free(ip->da); ip->da = NULL; } ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); if (ip == NULL) return(NULL); ip->ns = nsamps; return(ip); } /* Set minimum distance under which samples will start to merge */ void interp2_spacing(INTERP2 *ip, double mind) { if (mind <= 0) return; if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin)) return; if (ip->da != NULL) { /* will need to recompute distribution */ free(ip->da); ip->da = NULL; } ip->dmin = mind; } /* Compute unnormalized weight for a position relative to a sample */ double interp2_wti(INTERP2 *ip, const int i, double x, double y) { double dir, rd, r2, d2; int ri; /* get relative direction */ x -= ip->spt[i][0]; y -= ip->spt[i][1]; dir = atan2a(y, x); dir += 2.*PI*(dir < 0); /* linear radius interpolation */ rd = dir * (NI2DIR/2./PI); ri = (int)rd; rd -= (double)ri; rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR]; rd = ip->smf * DECODE_DIA(ip, rd); r2 = 2.*rd*rd; d2 = x*x + y*y; if (d2 > 21.*r2) /* result would be < 1e-9 */ return(.0); /* Gaussian times harmonic weighting */ return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); } /* private call to get grid flag index */ static int interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y) { int inbounds = 0; if (ip == NULL) /* paranoia */ return(-1); /* need to compute interpolant? */ if (ip->da == NULL && !interp2_analyze(ip)) return(-1); /* get x & y grid positions */ fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]); if (fgi[0] >= NI2DIM) fgi[0] = NI2DIM-1; else if (fgi[0] < 0) fgi[0] = 0; else ++inbounds; fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]); if (fgi[1] >= NI2DIM) fgi[1] = NI2DIM-1; else if (fgi[1] < 0) fgi[1] = 0; else ++inbounds; return(inbounds == 2); } #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi)) #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1) /* private flood function to determine sample influence */ static void influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM], int xfi, int yfi) { double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) + ip->smin[0]; double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) + ip->smin[1]; double dx = gx - ip->spt[i][0]; double dy = gy - ip->spt[i][1]; setflg(visited, xfi, yfi); if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7) return; setflg(ip->da[i].infl, xfi, yfi); if (xfi > 0 && !chkflg(visited, xfi-1, yfi)) influence_flood(ip, i, visited, xfi-1, yfi); if (yfi > 0 && !chkflg(visited, xfi, yfi-1)) influence_flood(ip, i, visited, xfi, yfi-1); if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi)) influence_flood(ip, i, visited, xfi+1, yfi); if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1)) influence_flood(ip, i, visited, xfi, yfi+1); } /* private call to compute sample influence maps */ static void map_influence(INTERP2 *ip) { unsigned short visited[NI2DIM]; int fgi[2]; int i, j; for (i = ip->ns; i--; ) { for (j = NI2DIM; j--; ) { ip->da[i].infl[j] = 0; visited[j] = 0; } interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); influence_flood(ip, i, visited, fgi[0], fgi[1]); } } /* Modify smoothing parameter by the given factor */ void interp2_smooth(INTERP2 *ip, double sf) { float old_smf = ip->smf; if ((ip->smf *= sf) < NI2DSMF) ip->smf = NI2DSMF; /* need to recompute influence maps? */ if (ip->da != NULL && (old_smf*.85 > ip->smf) | (ip->smf > old_smf*1.15)) map_influence(ip); } /* private call-back to sort position index */ static int cmp_spos(const void *p1, const void *p2) { const SAMPORD *so1 = (const SAMPORD *)p1; const SAMPORD *so2 = (const SAMPORD *)p2; if (so1->dm > so2->dm) return 1; if (so1->dm < so2->dm) return -1; return 0; } /* private routine to order samples in a particular direction */ static void sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang) { const double cosd = cos(ang); const double sind = sin(ang); int i; for (i = ip->ns; i--; ) { sord[i].si = i; sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; } qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos); } /* (Re)compute anisotropic basis function interpolant (normally automatic) */ int interp2_analyze(INTERP2 *ip) { SAMPORD *sortord; int *rightrndx, *leftrndx, *endrndx; int i, bd; /* sanity checks */ if (ip == NULL) return(0); if (ip->da != NULL) { /* free previous data if any */ free(ip->da); ip->da = NULL; } if ((ip->ns <= 1) | (ip->dmin <= 0)) return(0); /* compute sample domain */ ip->smin[0] = ip->smin[1] = FHUGE; ip->smax[0] = ip->smax[1] = -FHUGE; for (i = ip->ns; i--; ) { if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0]; if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0]; if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1]; if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1]; } ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) + (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) * (1./NI2DIM/NI2DIM); if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) return(0); /* allocate analysis data */ ip->da = (struct interp2_samp *)malloc( sizeof(struct interp2_samp)*ip->ns ); if (ip->da == NULL) return(0); /* allocate temporary arrays */ sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns); rightrndx = (int *)malloc(sizeof(int)*ip->ns); leftrndx = (int *)malloc(sizeof(int)*ip->ns); endrndx = (int *)malloc(sizeof(int)*ip->ns); if ((sortord == NULL) | (rightrndx == NULL) | (leftrndx == NULL) | (endrndx == NULL)) return(0); /* run through bidirections */ for (bd = 0; bd < NI2DIR/2; bd++) { const double ang = 2.*PI/NI2DIR*bd; int *sptr; /* create right reverse index */ if (bd) { /* re-use from previous iteration? */ sptr = rightrndx; rightrndx = leftrndx; leftrndx = sptr; } else { /* else sort first half-plane */ sort_samples(sortord, ip, PI/2. - PI/NI2DIR); for (i = ip->ns; i--; ) rightrndx[sortord[i].si] = i; /* & store reverse order for later */ for (i = ip->ns; i--; ) endrndx[sortord[i].si] = ip->ns-1 - i; } /* create new left reverse index */ if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */ sptr = leftrndx; leftrndx = endrndx; endrndx = sptr; } else { /* else compute new half-plane */ sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR)); for (i = ip->ns; i--; ) leftrndx[sortord[i].si] = i; } /* sort grid values in this direction */ sort_samples(sortord, ip, ang); /* find nearest neighbors each side */ for (i = ip->ns; i--; ) { const int ii = sortord[i].si; int j; /* preload with large radii */ ip->da[ii].dia[bd] = ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, .5*(sortord[ip->ns-1].dm - sortord[0].dm)); for (j = i; ++j < ip->ns; ) /* nearest above */ if (rightrndx[sortord[j].si] > rightrndx[ii] && leftrndx[sortord[j].si] < leftrndx[ii]) { ip->da[ii].dia[bd] = encode_diameter(ip, sortord[j].dm - sortord[i].dm); break; } for (j = i; j-- > 0; ) /* nearest below */ if (rightrndx[sortord[j].si] < rightrndx[ii] && leftrndx[sortord[j].si] > leftrndx[ii]) { ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, sortord[i].dm - sortord[j].dm); break; } } } free(sortord); /* release temp arrays */ free(rightrndx); free(leftrndx); free(endrndx); /* map sample influence areas */ map_influence(ip); return(1); /* all done */ } /* Assign full set of normalized weights to interpolate the given position */ int interp2_weights(float wtv[], INTERP2 *ip, double x, double y) { double wnorm; int fgi[2]; int i; if (wtv == NULL) return(0); /* get flag position */ if (interp2_flagpos(fgi, ip, x, y) < 0) return(0); wnorm = 0; /* compute raw weights */ for (i = ip->ns; i--; ) if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { double wt = interp2_wti(ip, i, x, y); wtv[i] = wt; wnorm += wt; } else wtv[i] = 0; if (wnorm <= 0) /* too far from all our samples! */ return(0); wnorm = 1./wnorm; /* normalize weights */ for (i = ip->ns; i--; ) wtv[i] *= wnorm; return(ip->ns); /* all done */ } /* Get normalized weights and indexes for n best samples in descending order */ int interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y) { int nn = 0; int fgi[2]; double wnorm; int i, j; if ((n <= 0) | (wt == NULL) | (si == NULL)) return(0); /* get flag position */ if (interp2_flagpos(fgi, ip, x, y) < 0) return(0); /* identify top n weights */ for (i = ip->ns; i--; ) if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { const double wti = interp2_wti(ip, i, x, y); for (j = nn; j > 0; j--) { if (wt[j-1] >= wti) break; if (j < n) { wt[j] = wt[j-1]; si[j] = si[j-1]; } } if (j < n) { /* add/insert sample */ wt[j] = wti; si[j] = i; nn += (nn < n); } } wnorm = 0; /* normalize sample weights */ for (j = nn; j--; ) wnorm += wt[j]; if (wnorm <= 0) return(0); wnorm = 1./wnorm; for (j = nn; j--; ) wt[j] *= wnorm; return(nn); /* return actual # samples */ } /* Free interpolant */ void interp2_free(INTERP2 *ip) { if (ip == NULL) return; if (ip->da != NULL) free(ip->da); free(ip); }