ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.12
Committed: Fri Feb 15 19:15:16 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.11: +116 -99 lines
Log Message:
Changed from blkflg to influence flag array

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: interp2d.c,v 2.11 2013/02/15 01:26:47 greg Exp $";
3 #endif
4 /*
5 * General interpolation method for unstructured values on 2-D plane.
6 *
7 * G.Ward Feb 2013
8 */
9
10 #include "copyright.h"
11
12 /***************************************************************
13 * This is a general method for 2-D interpolation similar to
14 * radial basis functions but allowing for a good deal of local
15 * anisotropy in the point distribution. Each sample point
16 * is examined to determine the closest neighboring samples in
17 * each of NI2DIR surrounding directions. To speed this
18 * calculation, we sort the data into half-planes and apply
19 * simple tests to see which neighbor is closest in each
20 * angular slice. Once we have our approximate neighborhood
21 * for a sample, we can use it in a modified Gaussian weighting
22 * with allowing local anisotropy. Harmonic weighting is added
23 * to reduce the influence of distant neighbors. This yields a
24 * smooth interpolation regardless of how the sample points are
25 * initially distributed. Evaluation is accelerated by use of
26 * a fast approximation to the atan2(y,x) function and an array
27 * of flags indicating where weights are (nearly) zero.
28 ****************************************************************/
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include "rtmath.h"
33 #include "interp2d.h"
34
35 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36 #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37
38 /* Sample order (private) */
39 typedef struct {
40 int si; /* sample index */
41 float dm; /* distance measure in this direction */
42 } SAMPORD;
43
44 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
45 INTERP2 *
46 interp2_alloc(int nsamps)
47 {
48 INTERP2 *nip;
49
50 if (nsamps <= 1)
51 return(NULL);
52
53 nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
54 if (nip == NULL)
55 return(NULL);
56
57 nip->ns = nsamps;
58 nip->dmin = 1; /* default minimum diameter */
59 nip->smf = NI2DSMF; /* default smoothing factor */
60 nip->da = NULL;
61 /* caller must assign spt[] array */
62 return(nip);
63 }
64
65 /* Resize interpolation array (caller must assign any new values) */
66 INTERP2 *
67 interp2_realloc(INTERP2 *ip, int nsamps)
68 {
69 if (ip == NULL)
70 return(interp2_alloc(nsamps));
71 if (nsamps <= 1) {
72 interp2_free(ip);
73 return(NULL);
74 }
75 if (nsamps == ip->ns)
76 return(ip);
77 if (ip->da != NULL) { /* will need to recompute distribution */
78 free(ip->da);
79 ip->da = NULL;
80 }
81 ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
82 if (ip == NULL)
83 return(NULL);
84 ip->ns = nsamps;
85 return(ip);
86 }
87
88 /* Set minimum distance under which samples will start to merge */
89 void
90 interp2_spacing(INTERP2 *ip, double mind)
91 {
92 if (mind <= 0)
93 return;
94 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
95 return;
96 if (ip->da != NULL) { /* will need to recompute distribution */
97 free(ip->da);
98 ip->da = NULL;
99 }
100 ip->dmin = mind;
101 }
102
103 /* Modify smoothing parameter by the given factor */
104 void
105 interp2_smooth(INTERP2 *ip, double sf)
106 {
107 if ((ip->smf *= sf) < NI2DSMF)
108 ip->smf = NI2DSMF;
109 }
110
111 /* private call-back to sort position index */
112 static int
113 cmp_spos(const void *p1, const void *p2)
114 {
115 const SAMPORD *so1 = (const SAMPORD *)p1;
116 const SAMPORD *so2 = (const SAMPORD *)p2;
117
118 if (so1->dm > so2->dm)
119 return 1;
120 if (so1->dm < so2->dm)
121 return -1;
122 return 0;
123 }
124
125 /* private routine to order samples in a particular direction */
126 static void
127 sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
128 {
129 const double cosd = cos(ang);
130 const double sind = sin(ang);
131 int i;
132
133 for (i = ip->ns; i--; ) {
134 sord[i].si = i;
135 sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
136 }
137 qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
138 }
139
140 /* private routine to encode sample diameter with range checks */
141 static int
142 encode_diameter(const INTERP2 *ip, double d)
143 {
144 const int ed = ENCODE_DIA(ip, d);
145
146 if (ed <= 0)
147 return(0);
148 if (ed >= 0xffff)
149 return(0xffff);
150 return(ed);
151 }
152
153 /* Compute unnormalized weight for a position relative to a sample */
154 double
155 interp2_wti(INTERP2 *ip, const int i, double x, double y)
156 {
157 double dir, rd, r2, d2;
158 int ri;
159 /* get relative direction */
160 x -= ip->spt[i][0];
161 y -= ip->spt[i][1];
162 dir = atan2a(y, x);
163 dir += 2.*PI*(dir < 0);
164 /* linear radius interpolation */
165 rd = dir * (NI2DIR/2./PI);
166 ri = (int)rd;
167 rd -= (double)ri;
168 rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
169 rd = ip->smf * DECODE_DIA(ip, rd);
170 r2 = 2.*rd*rd;
171 d2 = x*x + y*y;
172 if (d2 > 21.*r2) /* result would be < 1e-9 */
173 return(.0);
174 /* Gaussian times harmonic weighting */
175 return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
176 }
177
178 /* private call to get grid flag index */
179 static int
180 interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
181 {
182 int inbounds = 0;
183
184 if (ip == NULL) /* paranoia */
185 return(-1);
186 /* need to compute interpolant? */
187 if (ip->da == NULL && !interp2_analyze(ip))
188 return(-1);
189 /* get x & y grid positions */
190 fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
191
192 if (fgi[0] >= NI2DIM)
193 fgi[0] = NI2DIM-1;
194 else if (fgi[0] < 0)
195 fgi[0] = 0;
196 else
197 ++inbounds;
198
199 fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
200
201 if (fgi[1] >= NI2DIM)
202 fgi[1] = NI2DIM-1;
203 else if (fgi[1] < 0)
204 fgi[1] = 0;
205 else
206 ++inbounds;
207
208 return(inbounds == 2);
209 }
210
211 #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
212
213 #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
214
215 /* private flood function to determine sample influence */
216 static void
217 influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
218 int xfi, int yfi)
219 {
220 double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
221 ip->smin[0];
222 double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
223 ip->smin[1];
224 double dx = gx - ip->spt[i][0];
225 double dy = gy - ip->spt[i][1];
226
227 setflg(visited, xfi, yfi);
228
229 if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
230 return;
231
232 setflg(ip->da[i].infl, xfi, yfi);
233
234 if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
235 influence_flood(ip, i, visited, xfi-1, yfi);
236
237 if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
238 influence_flood(ip, i, visited, xfi, yfi-1);
239
240 if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
241 influence_flood(ip, i, visited, xfi+1, yfi);
242
243 if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
244 influence_flood(ip, i, visited, xfi, yfi+1);
245 }
246
247 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
248 int
249 interp2_analyze(INTERP2 *ip)
250 {
251 SAMPORD *sortord;
252 int *rightrndx, *leftrndx, *endrndx;
253 int i, j, bd;
254 /* sanity checks */
255 if (ip == NULL)
256 return(0);
257 if (ip->da != NULL) { /* free previous data if any */
258 free(ip->da);
259 ip->da = NULL;
260 }
261 if ((ip->ns <= 1) | (ip->dmin <= 0))
262 return(0);
263 /* compute sample domain */
264 ip->smin[0] = ip->smin[1] = FHUGE;
265 ip->smax[0] = ip->smax[1] = -FHUGE;
266 for (i = ip->ns; i--; ) {
267 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
268 if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
269 if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
270 if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
271 }
272 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
273 (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
274 (1./NI2DIM/NI2DIM);
275 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
276 return(0);
277 /* allocate analysis data */
278 ip->da = (struct interp2_samp *)calloc( ip->ns,
279 sizeof(struct interp2_samp) );
280 if (ip->da == NULL)
281 return(0);
282 /* allocate temporary arrays */
283 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
284 rightrndx = (int *)malloc(sizeof(int)*ip->ns);
285 leftrndx = (int *)malloc(sizeof(int)*ip->ns);
286 endrndx = (int *)malloc(sizeof(int)*ip->ns);
287 if ((sortord == NULL) | (rightrndx == NULL) |
288 (leftrndx == NULL) | (endrndx == NULL))
289 return(0);
290 /* run through bidirections */
291 for (bd = 0; bd < NI2DIR/2; bd++) {
292 const double ang = 2.*PI/NI2DIR*bd;
293 int *sptr;
294 /* create right reverse index */
295 if (bd) { /* re-use from previous iteration? */
296 sptr = rightrndx;
297 rightrndx = leftrndx;
298 leftrndx = sptr;
299 } else { /* else sort first half-plane */
300 sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
301 for (i = ip->ns; i--; )
302 rightrndx[sortord[i].si] = i;
303 /* & store reverse order for later */
304 for (i = ip->ns; i--; )
305 endrndx[sortord[i].si] = ip->ns-1 - i;
306 }
307 /* create new left reverse index */
308 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
309 sptr = leftrndx;
310 leftrndx = endrndx;
311 endrndx = sptr;
312 } else { /* else compute new half-plane */
313 sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
314 for (i = ip->ns; i--; )
315 leftrndx[sortord[i].si] = i;
316 }
317 /* sort grid values in this direction */
318 sort_samples(sortord, ip, ang);
319 /* find nearest neighbors each side */
320 for (i = ip->ns; i--; ) {
321 const int ii = sortord[i].si;
322 /* preload with large radii */
323 ip->da[ii].dia[bd] =
324 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
325 .5*(sortord[ip->ns-1].dm - sortord[0].dm));
326 for (j = i; ++j < ip->ns; ) /* nearest above */
327 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
328 leftrndx[sortord[j].si] < leftrndx[ii]) {
329 ip->da[ii].dia[bd] = encode_diameter(ip,
330 sortord[j].dm - sortord[i].dm);
331 break;
332 }
333 for (j = i; j-- > 0; ) /* nearest below */
334 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
335 leftrndx[sortord[j].si] > leftrndx[ii]) {
336 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
337 sortord[i].dm - sortord[j].dm);
338 break;
339 }
340 }
341 }
342 free(sortord); /* release temp arrays */
343 free(rightrndx);
344 free(leftrndx);
345 free(endrndx);
346 /* fill influence maps */
347 for (i = ip->ns; i--; ) {
348 unsigned short visited[NI2DIM];
349 int fgi[2];
350
351 for (j = NI2DIM; j--; ) visited[j] = 0;
352 interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
353 influence_flood(ip, i, visited, fgi[0], fgi[1]);
354 }
355 return(1); /* all done */
356 }
357
358 /* Assign full set of normalized weights to interpolate the given position */
359 int
360 interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
361 {
362 double wnorm;
363 int fgi[2];
364 int i;
365
366 if (wtv == NULL)
367 return(0);
368 /* get flag position */
369 if (interp2_flagpos(fgi, ip, x, y) < 0)
370 return(0);
371
372 wnorm = 0; /* compute raw weights */
373 for (i = ip->ns; i--; )
374 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
375 double wt = interp2_wti(ip, i, x, y);
376 wtv[i] = wt;
377 wnorm += wt;
378 } else
379 wtv[i] = 0;
380 if (wnorm <= 0) /* too far from all our samples! */
381 return(0);
382 wnorm = 1./wnorm; /* normalize weights */
383 for (i = ip->ns; i--; )
384 wtv[i] *= wnorm;
385 return(ip->ns); /* all done */
386 }
387
388
389 /* Get normalized weights and indexes for n best samples in descending order */
390 int
391 interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
392 {
393 int nn = 0;
394 int fgi[2];
395 double wnorm;
396 int i, j;
397
398 if ((n <= 0) | (wt == NULL) | (si == NULL))
399 return(0);
400 /* get flag position */
401 if (interp2_flagpos(fgi, ip, x, y) < 0)
402 return(0);
403 /* identify top n weights */
404 for (i = ip->ns; i--; )
405 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
406 const double wti = interp2_wti(ip, i, x, y);
407 for (j = nn; j > 0; j--) {
408 if (wt[j-1] >= wti)
409 break;
410 if (j < n) {
411 wt[j] = wt[j-1];
412 si[j] = si[j-1];
413 }
414 }
415 if (j < n) { /* add/insert sample */
416 wt[j] = wti;
417 si[j] = i;
418 nn += (nn < n);
419 }
420 }
421 wnorm = 0; /* normalize sample weights */
422 for (j = nn; j--; )
423 wnorm += wt[j];
424 if (wnorm <= 0)
425 return(0);
426 wnorm = 1./wnorm;
427 for (j = nn; j--; )
428 wt[j] *= wnorm;
429 return(nn); /* return actual # samples */
430 }
431
432 /* Free interpolant */
433 void
434 interp2_free(INTERP2 *ip)
435 {
436 if (ip == NULL)
437 return;
438 if (ip->da != NULL)
439 free(ip->da);
440 free(ip);
441 }