ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.11
Committed: Fri Feb 15 01:26:47 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.10: +88 -48 lines
Log Message:
Additional tweaks -- now 11 times faster than original version

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: interp2d.c,v 2.10 2013/02/14 19:57:10 greg Exp $";
3 #endif
4 /*
5 * General interpolation method for unstructured values on 2-D plane.
6 *
7 * G.Ward Feb 2013
8 */
9
10 #include "copyright.h"
11
12 /***************************************************************
13 * This is a general method for 2-D interpolation similar to
14 * radial basis functions but allowing for a good deal of local
15 * anisotropy in the point distribution. Each sample point
16 * is examined to determine the closest neighboring samples in
17 * each of NI2DIR surrounding directions. To speed this
18 * calculation, we sort the data into half-planes and apply
19 * simple tests to see which neighbor is closest in each
20 * angular slice. Once we have our approximate neighborhood
21 * for a sample, we can use it in a modified Gaussian weighting
22 * with allowing local anisotropy. Harmonic weighting is added
23 * to reduce the influence of distant neighbors. This yields a
24 * smooth interpolation regardless of how the sample points are
25 * initially distributed. Evaluation is accelerated by use of
26 * a fast approximation to the atan2(y,x) function and an array
27 * of flags indicating where weights are (nearly) zero.
28 ****************************************************************/
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include "rtmath.h"
33 #include "interp2d.h"
34
35 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36 #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37
38 /* Sample order (private) */
39 typedef struct {
40 int si; /* sample index */
41 float dm; /* distance measure in this direction */
42 } SAMPORD;
43
44 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
45 INTERP2 *
46 interp2_alloc(int nsamps)
47 {
48 INTERP2 *nip;
49
50 if (nsamps <= 1)
51 return(NULL);
52
53 nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
54 if (nip == NULL)
55 return(NULL);
56
57 nip->ns = nsamps;
58 nip->dmin = 1; /* default minimum diameter */
59 nip->smf = NI2DSMF; /* default smoothing factor */
60 nip->da = NULL;
61 /* caller must assign spt[] array */
62 return(nip);
63 }
64
65 /* Resize interpolation array (caller must assign any new values) */
66 INTERP2 *
67 interp2_realloc(INTERP2 *ip, int nsamps)
68 {
69 if (ip == NULL)
70 return(interp2_alloc(nsamps));
71 if (nsamps <= 1) {
72 interp2_free(ip);
73 return(NULL);
74 }
75 if (nsamps == ip->ns)
76 return(ip);
77 if (ip->da != NULL) { /* will need to recompute distribution */
78 free(ip->da);
79 ip->da = NULL;
80 }
81 ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
82 if (ip == NULL)
83 return(NULL);
84 ip->ns = nsamps;
85 return(ip);
86 }
87
88 /* Set minimum distance under which samples will start to merge */
89 void
90 interp2_spacing(INTERP2 *ip, double mind)
91 {
92 if (mind <= 0)
93 return;
94 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
95 return;
96 if (ip->da != NULL) { /* will need to recompute distribution */
97 free(ip->da);
98 ip->da = NULL;
99 }
100 ip->dmin = mind;
101 }
102
103 /* Modify smoothing parameter by the given factor */
104 void
105 interp2_smooth(INTERP2 *ip, double sf)
106 {
107 if ((ip->smf *= sf) < NI2DSMF)
108 ip->smf = NI2DSMF;
109 }
110
111 /* private call-back to sort position index */
112 static int
113 cmp_spos(const void *p1, const void *p2)
114 {
115 const SAMPORD *so1 = (const SAMPORD *)p1;
116 const SAMPORD *so2 = (const SAMPORD *)p2;
117
118 if (so1->dm > so2->dm)
119 return 1;
120 if (so1->dm < so2->dm)
121 return -1;
122 return 0;
123 }
124
125 /* private routine to order samples in a particular direction */
126 static void
127 sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
128 {
129 const double cosd = cos(ang);
130 const double sind = sin(ang);
131 int i;
132
133 for (i = ip->ns; i--; ) {
134 sord[i].si = i;
135 sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
136 }
137 qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
138 }
139
140 /* private routine to encode sample diameter with range checks */
141 static int
142 encode_diameter(const INTERP2 *ip, double d)
143 {
144 const int ed = ENCODE_DIA(ip, d);
145
146 if (ed <= 0)
147 return(0);
148 if (ed >= 0xffff)
149 return(0xffff);
150 return(ed);
151 }
152
153 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
154 int
155 interp2_analyze(INTERP2 *ip)
156 {
157 SAMPORD *sortord;
158 int *rightrndx, *leftrndx, *endrndx;
159 int i, bd;
160 /* sanity checks */
161 if (ip == NULL)
162 return(0);
163 if (ip->da != NULL) { /* free previous data if any */
164 free(ip->da);
165 ip->da = NULL;
166 }
167 if ((ip->ns <= 1) | (ip->dmin <= 0))
168 return(0);
169 /* compute sample domain */
170 ip->smin[0] = ip->smin[1] = FHUGE;
171 ip->smax[0] = ip->smax[1] = -FHUGE;
172 for (i = ip->ns; i--; ) {
173 if (ip->spt[i][0] < ip->smin[0])
174 ip->smin[0] = ip->spt[i][0];
175 if (ip->spt[i][0] > ip->smax[0])
176 ip->smax[0] = ip->spt[i][0];
177 if (ip->spt[i][1] < ip->smin[1])
178 ip->smin[1] = ip->spt[i][1];
179 if (ip->spt[i][1] > ip->smax[1])
180 ip->smax[1] = ip->spt[i][1];
181 }
182 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
183 (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
184 (1./NI2DIM/NI2DIM);
185 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
186 return(0);
187 /* allocate analysis data */
188 ip->da = (struct interp2_samp *)calloc( ip->ns,
189 sizeof(struct interp2_samp) );
190 if (ip->da == NULL)
191 return(0);
192 /* get temporary arrays */
193 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
194 rightrndx = (int *)malloc(sizeof(int)*ip->ns);
195 leftrndx = (int *)malloc(sizeof(int)*ip->ns);
196 endrndx = (int *)malloc(sizeof(int)*ip->ns);
197 if ((sortord == NULL) | (rightrndx == NULL) |
198 (leftrndx == NULL) | (endrndx == NULL))
199 return(0);
200 /* run through bidirections */
201 for (bd = 0; bd < NI2DIR/2; bd++) {
202 const double ang = 2.*PI/NI2DIR*bd;
203 int *sptr;
204 /* create right reverse index */
205 if (bd) { /* re-use from previous iteration? */
206 sptr = rightrndx;
207 rightrndx = leftrndx;
208 leftrndx = sptr;
209 } else { /* else sort first half-plane */
210 sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
211 for (i = ip->ns; i--; )
212 rightrndx[sortord[i].si] = i;
213 /* & store reverse order for later */
214 for (i = ip->ns; i--; )
215 endrndx[sortord[i].si] = ip->ns-1 - i;
216 }
217 /* create new left reverse index */
218 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
219 sptr = leftrndx;
220 leftrndx = endrndx;
221 endrndx = sptr;
222 } else { /* else compute new half-plane */
223 sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
224 for (i = ip->ns; i--; )
225 leftrndx[sortord[i].si] = i;
226 }
227 /* sort grid values in this direction */
228 sort_samples(sortord, ip, ang);
229 /* find nearest neighbors each side */
230 for (i = ip->ns; i--; ) {
231 const int ii = sortord[i].si;
232 int j;
233 /* preload with large radii */
234 ip->da[ii].dia[bd] =
235 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
236 .5*(sortord[ip->ns-1].dm - sortord[0].dm));
237 for (j = i; ++j < ip->ns; ) /* nearest above */
238 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
239 leftrndx[sortord[j].si] < leftrndx[ii]) {
240 ip->da[ii].dia[bd] = encode_diameter(ip,
241 sortord[j].dm - sortord[i].dm);
242 break;
243 }
244 for (j = i; j-- > 0; ) /* nearest below */
245 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
246 leftrndx[sortord[j].si] > leftrndx[ii]) {
247 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
248 sortord[i].dm - sortord[j].dm);
249 break;
250 }
251 }
252 }
253 free(sortord); /* clean up */
254 free(rightrndx);
255 free(leftrndx);
256 free(endrndx);
257 return(1);
258 }
259
260 /* Compute unnormalized weight for a position relative to a sample */
261 double
262 interp2_wti(INTERP2 *ip, const int i, double x, double y)
263 {
264 double dir, rd, r2, d2;
265 int ri;
266 /* get relative direction */
267 x -= ip->spt[i][0];
268 y -= ip->spt[i][1];
269 dir = atan2a(y, x);
270 dir += 2.*PI*(dir < 0);
271 /* linear radius interpolation */
272 rd = dir * (NI2DIR/2./PI);
273 ri = (int)rd;
274 rd -= (double)ri;
275 rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
276 rd = ip->smf * DECODE_DIA(ip, rd);
277 r2 = 2.*rd*rd;
278 d2 = x*x + y*y;
279 if (d2 > 21.*r2) /* result would be < 1e-9 */
280 return(.0);
281 /* Gaussian times harmonic weighting */
282 return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
283 }
284
285 /* private call to get grid flag index */
286 static int
287 interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
288 {
289 int ingrid = 1;
290
291 if (ip == NULL) /* paranoia */
292 return(-1);
293 /* need to compute interpolant? */
294 if (ip->da == NULL && !interp2_analyze(ip))
295 return(-1);
296 /* get grid position */
297 fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
298 if (fgi[0] >= NI2DIM) {
299 fgi[0] = NI2DIM-1;
300 ingrid = 0;
301 } else if (fgi[0] < 0) {
302 fgi[0] = 0;
303 ingrid = 0;
304 }
305 fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
306 if (fgi[1] >= NI2DIM) {
307 fgi[1] = NI2DIM-1;
308 ingrid = 0;
309 } else if (fgi[1] < 0) {
310 fgi[1] = 0;
311 ingrid = 0;
312 }
313 return(ingrid);
314 }
315
316 /* private call to set black flag if not too close to the given sample */
317 static void
318 setblk(INTERP2 *ip, const int i, const int gi[2])
319 {
320 double dx = (gi[0]+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
321 ip->smin[0] - ip->spt[i][0];
322 double dy = (gi[1]+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
323 ip->smin[1] - ip->spt[i][1];
324
325 if (dx*dx + dy*dy > 2.*ip->grid2)
326 ip->da[i].blkflg[gi[1]] |= 1<<gi[0];
327 }
328
329 #define chkblk(ip,i,gi) ((ip)->da[i].blkflg[(gi)[1]]>>(gi)[0] & 1)
330
331 /* Assign full set of normalized weights to interpolate the given position */
332 int
333 interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
334 {
335 double wnorm;
336 int fgi[2];
337 int ingrid;
338 int i;
339
340 if (wtv == NULL)
341 return(0);
342 /* get flag position */
343 if ((ingrid = interp2_flagpos(fgi, ip, x, y)) < 0)
344 return(0);
345
346 wnorm = 0; /* compute raw weights */
347 for (i = ip->ns; i--; )
348 if (chkblk(ip, i, fgi)) {
349 wtv[i] = 0;
350 } else {
351 double wt = interp2_wti(ip, i, x, y);
352 wtv[i] = wt;
353 wnorm += wt;
354 if (wt <= 1e-9 && ingrid)
355 setblk(ip, i, fgi);
356 }
357 if (wnorm <= 0) /* too far from all our samples! */
358 return(0);
359 wnorm = 1./wnorm; /* normalize weights */
360 for (i = ip->ns; i--; )
361 wtv[i] *= wnorm;
362 return(ip->ns); /* all done */
363 }
364
365
366 /* Get normalized weights and indexes for n best samples in descending order */
367 int
368 interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
369 {
370 int nn = 0;
371 int fgi[2];
372 int ingrid;
373 double wnorm;
374 int i, j;
375
376 if ((n <= 0) | (wt == NULL) | (si == NULL))
377 return(0);
378 /* get flag position */
379 if ((ingrid = interp2_flagpos(fgi, ip, x, y)) < 0)
380 return(0);
381 /* identify top n weights */
382 for (i = ip->ns; i--; )
383 if (!chkblk(ip, i, fgi)) {
384 const double wti = interp2_wti(ip, i, x, y);
385 if (wti <= 1e-9) {
386 if (ingrid)
387 setblk(ip, i, fgi);
388 continue;
389 }
390 for (j = nn; j > 0; j--) {
391 if (wt[j-1] >= wti)
392 break;
393 if (j < n) {
394 wt[j] = wt[j-1];
395 si[j] = si[j-1];
396 }
397 }
398 if (j < n) { /* add/insert sample */
399 wt[j] = wti;
400 si[j] = i;
401 nn += (nn < n);
402 }
403 }
404 wnorm = 0; /* normalize sample weights */
405 for (j = nn; j--; )
406 wnorm += wt[j];
407 if (wnorm <= 0)
408 return(0);
409 wnorm = 1./wnorm;
410 for (j = nn; j--; )
411 wt[j] *= wnorm;
412 return(nn); /* return actual # samples */
413 }
414
415 /* Free interpolant */
416 void
417 interp2_free(INTERP2 *ip)
418 {
419 if (ip == NULL)
420 return;
421 if (ip->da != NULL)
422 free(ip->da);
423 free(ip);
424 }