ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.10
Committed: Thu Feb 14 19:57:10 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +74 -32 lines
Log Message:
Doubled calculation speed and exposed raw weight computation

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: interp2d.c,v 2.9 2013/02/12 18:41:39 greg Exp $";
3 #endif
4 /*
5 * General interpolation method for unstructured values on 2-D plane.
6 *
7 * G.Ward Feb 2013
8 */
9
10 #include "copyright.h"
11
12 /***************************************************************
13 * This is a general method for 2-D interpolation similar to
14 * radial basis functions but allowing for a good deal of local
15 * anisotropy in the point distribution. Each sample point
16 * is examined to determine the closest neighboring samples in
17 * each of NI2DIR surrounding directions. To speed this
18 * calculation, we sort the data into half-planes and apply
19 * simple tests to see which neighbor is closest in each
20 * angular slice. Once we have our approximate neighborhood
21 * for a sample, we can use it in a modified Gaussian weighting
22 * with allowing local anisotropy. Harmonic weighting is added
23 * to reduce the influence of distant neighbors. This yields a
24 * smooth interpolation regardless of how the sample points are
25 * initially distributed. Evaluation is accelerated by use of
26 * a fast approximation to the atan2(y,x) function and an array
27 * of flags indicating where weights are (nearly) zero.
28 ****************************************************************/
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include "rtmath.h"
33 #include "interp2d.h"
34
35 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36 #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37
38 /* Sample order (private) */
39 typedef struct {
40 int si; /* sample index */
41 float dm; /* distance measure in this direction */
42 } SAMPORD;
43
44 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
45 INTERP2 *
46 interp2_alloc(int nsamps)
47 {
48 INTERP2 *nip;
49
50 if (nsamps <= 1)
51 return(NULL);
52
53 nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
54 if (nip == NULL)
55 return(NULL);
56
57 nip->ns = nsamps;
58 nip->dmin = 1; /* default minimum diameter */
59 nip->smf = NI2DSMF; /* default smoothing factor */
60 nip->da = NULL;
61 /* caller must assign spt[] array */
62 return(nip);
63 }
64
65 /* Resize interpolation array (caller must assign any new values) */
66 INTERP2 *
67 interp2_realloc(INTERP2 *ip, int nsamps)
68 {
69 if (ip == NULL)
70 return(interp2_alloc(nsamps));
71 if (nsamps <= 1) {
72 interp2_free(ip);
73 return(NULL);
74 }
75 if (nsamps == ip->ns)
76 return(ip);
77 if (ip->da != NULL) { /* will need to recompute distribution */
78 free(ip->da);
79 ip->da = NULL;
80 }
81 ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
82 if (ip == NULL)
83 return(NULL);
84 ip->ns = nsamps;
85 return(ip);
86 }
87
88 /* Set minimum distance under which samples will start to merge */
89 void
90 interp2_spacing(INTERP2 *ip, double mind)
91 {
92 if (mind <= 0)
93 return;
94 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
95 return;
96 if (ip->da != NULL) { /* will need to recompute distribution */
97 free(ip->da);
98 ip->da = NULL;
99 }
100 ip->dmin = mind;
101 }
102
103 /* Modify smoothing parameter by the given factor */
104 void
105 interp2_smooth(INTERP2 *ip, double sf)
106 {
107 if ((ip->smf *= sf) < NI2DSMF)
108 ip->smf = NI2DSMF;
109 }
110
111 /* private call-back to sort position index */
112 static int
113 cmp_spos(const void *p1, const void *p2)
114 {
115 const SAMPORD *so1 = (const SAMPORD *)p1;
116 const SAMPORD *so2 = (const SAMPORD *)p2;
117
118 if (so1->dm > so2->dm)
119 return 1;
120 if (so1->dm < so2->dm)
121 return -1;
122 return 0;
123 }
124
125 /* private routine to order samples in a particular direction */
126 static void
127 sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
128 {
129 const double cosd = cos(ang);
130 const double sind = sin(ang);
131 int i;
132
133 for (i = ip->ns; i--; ) {
134 sord[i].si = i;
135 sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
136 }
137 qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
138 }
139
140 /* private routine to encode sample diameter with range checks */
141 static int
142 encode_diameter(const INTERP2 *ip, double d)
143 {
144 const int ed = ENCODE_DIA(ip, d);
145
146 if (ed <= 0)
147 return(0);
148 if (ed >= 0xffff)
149 return(0xffff);
150 return(ed);
151 }
152
153 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
154 int
155 interp2_analyze(INTERP2 *ip)
156 {
157 SAMPORD *sortord;
158 int *rightrndx, *leftrndx, *endrndx;
159 int i, bd;
160 /* sanity checks */
161 if (ip == NULL)
162 return(0);
163 if (ip->da != NULL) { /* free previous data if any */
164 free(ip->da);
165 ip->da = NULL;
166 }
167 if ((ip->ns <= 1) | (ip->dmin <= 0))
168 return(0);
169 /* compute sample domain */
170 ip->smin[0] = ip->smin[1] = FHUGE;
171 ip->smul[0] = ip->smul[1] = -FHUGE;
172 for (i = ip->ns; i--; ) {
173 if (ip->spt[i][0] < ip->smin[0])
174 ip->smin[0] = ip->spt[i][0];
175 if (ip->spt[i][0] > ip->smul[0])
176 ip->smul[0] = ip->spt[i][0];
177 if (ip->spt[i][1] < ip->smin[1])
178 ip->smin[1] = ip->spt[i][1];
179 if (ip->spt[i][1] > ip->smul[1])
180 ip->smul[1] = ip->spt[i][1];
181 }
182 ip->smul[0] -= ip->smin[0];
183 ip->smul[1] -= ip->smin[1];
184 ip->grid2 = (ip->smul[0]*ip->smul[0] + ip->smul[1]*ip->smul[1]) *
185 (4./NI2DIM/NI2DIM);
186 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
187 return(0);
188 if (ip->smul[0] > FTINY)
189 ip->smul[0] = NI2DIM / ip->smul[0];
190 if (ip->smul[1] > FTINY)
191 ip->smul[1] = NI2DIM / ip->smul[1];
192 /* allocate analysis data */
193 ip->da = (struct interp2_samp *)calloc( ip->ns,
194 sizeof(struct interp2_samp) );
195 if (ip->da == NULL)
196 return(0);
197 /* get temporary arrays */
198 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
199 rightrndx = (int *)malloc(sizeof(int)*ip->ns);
200 leftrndx = (int *)malloc(sizeof(int)*ip->ns);
201 endrndx = (int *)malloc(sizeof(int)*ip->ns);
202 if ((sortord == NULL) | (rightrndx == NULL) |
203 (leftrndx == NULL) | (endrndx == NULL))
204 return(0);
205 /* run through bidirections */
206 for (bd = 0; bd < NI2DIR/2; bd++) {
207 const double ang = 2.*PI/NI2DIR*bd;
208 int *sptr;
209 /* create right reverse index */
210 if (bd) { /* re-use from previous iteration? */
211 sptr = rightrndx;
212 rightrndx = leftrndx;
213 leftrndx = sptr;
214 } else { /* else sort first half-plane */
215 sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
216 for (i = ip->ns; i--; )
217 rightrndx[sortord[i].si] = i;
218 /* & store reverse order for later */
219 for (i = ip->ns; i--; )
220 endrndx[sortord[i].si] = ip->ns-1 - i;
221 }
222 /* create new left reverse index */
223 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
224 sptr = leftrndx;
225 leftrndx = endrndx;
226 endrndx = sptr;
227 } else { /* else compute new half-plane */
228 sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
229 for (i = ip->ns; i--; )
230 leftrndx[sortord[i].si] = i;
231 }
232 /* sort grid values in this direction */
233 sort_samples(sortord, ip, ang);
234 /* find nearest neighbors each side */
235 for (i = ip->ns; i--; ) {
236 const int ii = sortord[i].si;
237 int j;
238 /* preload with large radii */
239 ip->da[ii].dia[bd] =
240 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
241 .5*(sortord[ip->ns-1].dm - sortord[0].dm));
242 for (j = i; ++j < ip->ns; ) /* nearest above */
243 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
244 leftrndx[sortord[j].si] < leftrndx[ii]) {
245 ip->da[ii].dia[bd] = encode_diameter(ip,
246 sortord[j].dm - sortord[i].dm);
247 break;
248 }
249 for (j = i; j-- > 0; ) /* nearest below */
250 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
251 leftrndx[sortord[j].si] > leftrndx[ii]) {
252 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
253 sortord[i].dm - sortord[j].dm);
254 break;
255 }
256 }
257 }
258 free(sortord); /* clean up */
259 free(rightrndx);
260 free(leftrndx);
261 free(endrndx);
262 return(1);
263 }
264
265 /* Compute unnormalized weight for a position relative to a sample */
266 double
267 interp2_wti(INTERP2 *ip, const int i, double x, double y)
268 {
269 int xfi, yfi;
270 double dir, rd, r2, d2;
271 int ri;
272 /* need to compute interpolant? */
273 if (ip->da == NULL && !interp2_analyze(ip))
274 return(0);
275 /* get grid position */
276 xfi = (x - ip->smin[0]) * ip->smul[0];
277 if (xfi >= NI2DIM)
278 xfi = NI2DIM-1;
279 else
280 xfi *= (xfi >= 0);
281 yfi = (y - ip->smin[1]) * ip->smul[1];
282 if (yfi >= NI2DIM)
283 yfi = NI2DIM-1;
284 else
285 yfi *= (yfi >= 0);
286 x -= ip->spt[i][0]; /* check distance */
287 y -= ip->spt[i][1];
288 d2 = x*x + y*y;
289 /* zero weight this zone? */
290 if (d2 > ip->grid2 && ip->da[i].blkflg[yfi] & 1<<xfi)
291 return(.0);
292
293 dir = atan2a(y, x); /* get relative direction */
294 dir += 2.*PI*(dir < 0);
295 /* linear radius interpolation */
296 rd = dir * (NI2DIR/2./PI);
297 ri = (int)rd;
298 rd -= (double)ri;
299 rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
300 rd = ip->smf * DECODE_DIA(ip, rd);
301 r2 = 2.*rd*rd;
302 if (d2 > 21.*r2) { /* result would be < 1e-9 */
303 ip->da[i].blkflg[yfi] |= 1<<xfi;
304 return(.0);
305 }
306 /* Gaussian times harmonic weighting */
307 return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
308 }
309
310 /* Assign full set of normalized weights to interpolate the given position */
311 int
312 interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
313 {
314 double wnorm;
315 int i;
316
317 if ((wtv == NULL) | (ip == NULL))
318 return(0);
319
320 wnorm = 0; /* compute raw weights */
321 for (i = ip->ns; i--; ) {
322 double wt = interp2_wti(ip, i, x, y);
323 wtv[i] = wt;
324 wnorm += wt;
325 }
326 if (wnorm <= 0) /* too far from all our samples! */
327 return(0);
328 wnorm = 1./wnorm; /* normalize weights */
329 for (i = ip->ns; i--; )
330 wtv[i] *= wnorm;
331 return(ip->ns); /* all done */
332 }
333
334
335 /* Get normalized weights and indexes for n best samples in descending order */
336 int
337 interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
338 {
339 int nn = 0;
340 double wnorm;
341 int i, j;
342
343 if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL))
344 return(0);
345 /* identify top n weights */
346 for (i = ip->ns; i--; ) {
347 const double wti = interp2_wti(ip, i, x, y);
348 if (wti <= 1e-9)
349 continue;
350 for (j = nn; j > 0; j--) {
351 if (wt[j-1] >= wti)
352 break;
353 if (j < n) {
354 wt[j] = wt[j-1];
355 si[j] = si[j-1];
356 }
357 }
358 if (j < n) { /* add/insert sample */
359 wt[j] = wti;
360 si[j] = i;
361 nn += (nn < n);
362 }
363 }
364 wnorm = 0; /* normalize sample weights */
365 for (j = nn; j--; )
366 wnorm += wt[j];
367 if (wnorm <= 0)
368 return(0);
369 wnorm = 1./wnorm;
370 for (j = nn; j--; )
371 wt[j] *= wnorm;
372 return(nn); /* return actual # samples */
373 }
374
375 /* Free interpolant */
376 void
377 interp2_free(INTERP2 *ip)
378 {
379 if (ip == NULL)
380 return;
381 if (ip->da != NULL)
382 free(ip->da);
383 free(ip);
384 }