| 9 |
|
|
| 10 |
|
#include "copyright.h" |
| 11 |
|
|
| 12 |
< |
/************************************************************* |
| 12 |
> |
/*************************************************************** |
| 13 |
|
* This is a general method for 2-D interpolation similar to |
| 14 |
|
* radial basis functions but allowing for a good deal of local |
| 15 |
|
* anisotropy in the point distribution. Each sample point |
| 16 |
|
* is examined to determine the closest neighboring samples in |
| 17 |
|
* each of NI2DIR surrounding directions. To speed this |
| 18 |
< |
* calculation, we sort the data into 3 half-planes and |
| 19 |
< |
* perform simple tests to see which neighbor is closest in |
| 20 |
< |
* a each direction. Once we have our approximate neighborhood |
| 18 |
> |
* calculation, we sort the data into half-planes and apply |
| 19 |
> |
* simple tests to see which neighbor is closest in each |
| 20 |
> |
* direction. Once we have our approximate neighborhood |
| 21 |
|
* for a sample, we can use it in a modified Gaussian weighting |
| 22 |
< |
* scheme with anisotropic surround. Harmonic weighting is added |
| 22 |
> |
* with allowing local anisotropy. Harmonic weighting is added |
| 23 |
|
* to reduce the influence of distant neighbors. This yields a |
| 24 |
|
* smooth interpolation regardless of how the sample points are |
| 25 |
< |
* initiallydistributed. Evaluation is accelerated by use of a |
| 26 |
< |
* fast approximation to the atan2(y,x) function. |
| 27 |
< |
**************************************************************/ |
| 25 |
> |
* initially distributed. Evaluation is accelerated by use of |
| 26 |
> |
* a fast approximation to the atan2(y,x) function. |
| 27 |
> |
****************************************************************/ |
| 28 |
|
|
| 29 |
|
#include <stdio.h> |
| 30 |
|
#include <stdlib.h> |
| 31 |
|
#include "rtmath.h" |
| 32 |
|
#include "interp2d.h" |
| 33 |
|
|
| 34 |
< |
#define DECODE_RAD(ip,er) ((ip)->rmin*(1. + .5*(er))) |
| 35 |
< |
#define ENCODE_RAD(ip,r) ((int)(2.*(r)/(ip)->rmin) - 2) |
| 34 |
> |
#define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed))) |
| 35 |
> |
#define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2) |
| 36 |
|
|
| 37 |
|
/* Sample order (private) */ |
| 38 |
|
typedef struct { |
| 54 |
|
return(NULL); |
| 55 |
|
|
| 56 |
|
nip->ns = nsamps; |
| 57 |
< |
nip->rmin = .5; /* default radius minimum */ |
| 57 |
> |
nip->dmin = 1; /* default minimum diameter */ |
| 58 |
|
nip->smf = NI2DSMF; /* default smoothing factor */ |
| 59 |
< |
nip->ra = NULL; |
| 59 |
> |
nip->da = NULL; |
| 60 |
|
/* caller must assign spt[] array */ |
| 61 |
|
return(nip); |
| 62 |
|
} |
| 73 |
|
} |
| 74 |
|
if (nsamps == ip->ns); |
| 75 |
|
return(ip); |
| 76 |
< |
if (ip->ra != NULL) { /* will need to recompute distribution */ |
| 77 |
< |
free(ip->ra); |
| 78 |
< |
ip->ra = NULL; |
| 76 |
> |
if (ip->da != NULL) { /* will need to recompute distribution */ |
| 77 |
> |
free(ip->da); |
| 78 |
> |
ip->da = NULL; |
| 79 |
|
} |
| 80 |
|
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); |
| 81 |
|
if (ip == NULL) |
| 84 |
|
return(ip); |
| 85 |
|
} |
| 86 |
|
|
| 87 |
+ |
/* Set minimum distance under which samples will start to merge */ |
| 88 |
+ |
void |
| 89 |
+ |
interp2_spacing(INTERP2 *ip, double mind) |
| 90 |
+ |
{ |
| 91 |
+ |
if (mind <= 0) |
| 92 |
+ |
return; |
| 93 |
+ |
if ((.998*ip->dmin <= mind) && (mind <= 1.002*ip->dmin)) |
| 94 |
+ |
return; |
| 95 |
+ |
if (ip->da != NULL) { /* will need to recompute distribution */ |
| 96 |
+ |
free(ip->da); |
| 97 |
+ |
ip->da = NULL; |
| 98 |
+ |
} |
| 99 |
+ |
ip->dmin = mind; |
| 100 |
+ |
} |
| 101 |
+ |
|
| 102 |
+ |
/* Modify smoothing parameter by the given factor */ |
| 103 |
+ |
void |
| 104 |
+ |
interp2_smooth(INTERP2 *ip, double sf) |
| 105 |
+ |
{ |
| 106 |
+ |
if ((ip->smf *= sf) < NI2DSMF) |
| 107 |
+ |
ip->smf = NI2DSMF; |
| 108 |
+ |
} |
| 109 |
+ |
|
| 110 |
|
/* private call-back to sort position index */ |
| 111 |
|
static int |
| 112 |
|
cmp_spos(const void *p1, const void *p2) |
| 136 |
|
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); |
| 137 |
|
} |
| 138 |
|
|
| 139 |
< |
/* private routine to encode radius with range checks */ |
| 139 |
> |
/* private routine to encode sample diameter with range checks */ |
| 140 |
|
static int |
| 141 |
< |
encode_radius(const INTERP2 *ip, double r) |
| 141 |
> |
encode_diameter(const INTERP2 *ip, double d) |
| 142 |
|
{ |
| 143 |
< |
const int er = ENCODE_RAD(ip, r); |
| 143 |
> |
const int ed = ENCODE_DIA(ip, d); |
| 144 |
|
|
| 145 |
< |
if (er <= 0) |
| 145 |
> |
if (ed <= 0) |
| 146 |
|
return(0); |
| 147 |
< |
if (er >= 0xffff) |
| 147 |
> |
if (ed >= 0xffff) |
| 148 |
|
return(0xffff); |
| 149 |
< |
return(er); |
| 149 |
> |
return(ed); |
| 150 |
|
} |
| 151 |
|
|
| 152 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
| 157 |
|
int *rightrndx, *leftrndx, *endrndx; |
| 158 |
|
int bd; |
| 159 |
|
/* sanity checks */ |
| 160 |
< |
if (ip == NULL || (ip->ns <= 1) | (ip->rmin <= 0)) |
| 160 |
> |
if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0)) |
| 161 |
|
return(0); |
| 162 |
|
/* need to allocate? */ |
| 163 |
< |
if (ip->ra == NULL) { |
| 164 |
< |
ip->ra = (unsigned short (*)[NI2DIR])malloc( |
| 163 |
> |
if (ip->da == NULL) { |
| 164 |
> |
ip->da = (unsigned short (*)[NI2DIR])malloc( |
| 165 |
|
sizeof(unsigned short)*NI2DIR*ip->ns); |
| 166 |
< |
if (ip->ra == NULL) |
| 166 |
> |
if (ip->da == NULL) |
| 167 |
|
return(0); |
| 168 |
|
} |
| 169 |
|
/* get temporary arrays */ |
| 209 |
|
const int ii = sortord[i].si; |
| 210 |
|
int j; |
| 211 |
|
/* preload with large radii */ |
| 212 |
< |
ip->ra[ii][bd] = ip->ra[ii][bd+NI2DIR/2] = encode_radius(ip, |
| 213 |
< |
.25*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 212 |
> |
ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 213 |
> |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 214 |
|
for (j = i; ++j < ip->ns; ) /* nearest above */ |
| 215 |
|
if (rightrndx[sortord[j].si] > rightrndx[ii] && |
| 216 |
|
leftrndx[sortord[j].si] < leftrndx[ii]) { |
| 217 |
< |
ip->ra[ii][bd] = encode_radius(ip, |
| 218 |
< |
.5*(sortord[j].dm - sortord[i].dm)); |
| 217 |
> |
ip->da[ii][bd] = encode_diameter(ip, |
| 218 |
> |
sortord[j].dm - sortord[i].dm); |
| 219 |
|
break; |
| 220 |
|
} |
| 221 |
|
for (j = i; j-- > 0; ) /* nearest below */ |
| 222 |
|
if (rightrndx[sortord[j].si] < rightrndx[ii] && |
| 223 |
|
leftrndx[sortord[j].si] > leftrndx[ii]) { |
| 224 |
< |
ip->ra[ii][bd+NI2DIR/2] = encode_radius(ip, |
| 225 |
< |
.5*(sortord[i].dm - sortord[j].dm)); |
| 224 |
> |
ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 225 |
> |
sortord[i].dm - sortord[j].dm); |
| 226 |
|
break; |
| 227 |
|
} |
| 228 |
|
} |
| 249 |
|
rd = dir * (NI2DIR/2./PI); |
| 250 |
|
ri = (int)rd; |
| 251 |
|
rd -= (double)ri; |
| 252 |
< |
rd = (1.-rd)*ip->ra[i][ri] + rd*ip->ra[i][(ri+1)%NI2DIR]; |
| 253 |
< |
rd = ip->smf * DECODE_RAD(ip, rd); |
| 252 |
> |
rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR]; |
| 253 |
> |
rd = ip->smf * DECODE_DIA(ip, rd); |
| 254 |
|
d2 = x*x + y*y; |
| 255 |
|
/* Gaussian times harmonic weighting */ |
| 256 |
< |
return( exp(d2/(-2.*rd*rd)) * ip->rmin/(ip->rmin + sqrt(d2)) ); |
| 256 |
> |
return( exp(d2/(-2.*rd*rd)) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
| 257 |
|
} |
| 258 |
|
|
| 259 |
|
/* Assign full set of normalized weights to interpolate the given position */ |
| 266 |
|
if ((wtv == NULL) | (ip == NULL)) |
| 267 |
|
return(0); |
| 268 |
|
/* need to compute interpolant? */ |
| 269 |
< |
if (ip->ra == NULL && !interp2_analyze(ip)) |
| 269 |
> |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 270 |
|
return(0); |
| 271 |
|
|
| 272 |
|
wnorm = 0; /* compute raw weights */ |
| 295 |
|
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) |
| 296 |
|
return(0); |
| 297 |
|
/* need to compute interpolant? */ |
| 298 |
< |
if (ip->ra == NULL && !interp2_analyze(ip)) |
| 298 |
> |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 299 |
|
return(0); |
| 300 |
|
/* identify top n weights */ |
| 301 |
|
for (i = ip->ns; i--; ) { |
| 331 |
|
{ |
| 332 |
|
if (ip == NULL) |
| 333 |
|
return; |
| 334 |
< |
if (ip->ra != NULL) |
| 335 |
< |
free(ip->ra); |
| 334 |
> |
if (ip->da != NULL) |
| 335 |
> |
free(ip->da); |
| 336 |
|
free(ip); |
| 337 |
|
} |