| 9 |
|
|
| 10 |
|
#include "copyright.h" |
| 11 |
|
|
| 12 |
< |
/************************************************************* |
| 12 |
> |
/*************************************************************** |
| 13 |
|
* This is a general method for 2-D interpolation similar to |
| 14 |
|
* radial basis functions but allowing for a good deal of local |
| 15 |
|
* anisotropy in the point distribution. Each sample point |
| 16 |
|
* is examined to determine the closest neighboring samples in |
| 17 |
|
* each of NI2DIR surrounding directions. To speed this |
| 18 |
< |
* calculation, we sort the data into 3 half-planes and |
| 19 |
< |
* perform simple tests to see which neighbor is closest in |
| 20 |
< |
* a each direction. Once we have our approximate neighborhood |
| 18 |
> |
* calculation, we sort the data into half-planes and apply |
| 19 |
> |
* simple tests to see which neighbor is closest in each |
| 20 |
> |
* angular slice. Once we have our approximate neighborhood |
| 21 |
|
* for a sample, we can use it in a modified Gaussian weighting |
| 22 |
< |
* scheme with anisotropic surround. Harmonic weighting is added |
| 22 |
> |
* with allowing local anisotropy. Harmonic weighting is added |
| 23 |
|
* to reduce the influence of distant neighbors. This yields a |
| 24 |
|
* smooth interpolation regardless of how the sample points are |
| 25 |
< |
* initiallydistributed. Evaluation is accelerated by use of a |
| 26 |
< |
* fast approximation to the atan2(y,x) function. |
| 27 |
< |
**************************************************************/ |
| 25 |
> |
* initially distributed. Evaluation is accelerated by use of |
| 26 |
> |
* a fast approximation to the atan2(y,x) function and an array |
| 27 |
> |
* of flags indicating where weights are (nearly) zero. |
| 28 |
> |
****************************************************************/ |
| 29 |
|
|
| 30 |
|
#include <stdio.h> |
| 31 |
|
#include <stdlib.h> |
| 32 |
|
#include "rtmath.h" |
| 33 |
|
#include "interp2d.h" |
| 34 |
|
|
| 35 |
< |
#define DECODE_RAD(ip,er) ((ip)->rmin*(1. + .5*(er))) |
| 36 |
< |
#define ENCODE_RAD(ip,r) ((int)(2.*(r)/(ip)->rmin) - 2) |
| 35 |
> |
#define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed))) |
| 36 |
> |
#define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2) |
| 37 |
|
|
| 38 |
|
/* Sample order (private) */ |
| 39 |
|
typedef struct { |
| 55 |
|
return(NULL); |
| 56 |
|
|
| 57 |
|
nip->ns = nsamps; |
| 58 |
< |
nip->rmin = .5; /* default radius minimum */ |
| 58 |
> |
nip->dmin = 1; /* default minimum diameter */ |
| 59 |
|
nip->smf = NI2DSMF; /* default smoothing factor */ |
| 60 |
< |
nip->ra = NULL; |
| 60 |
> |
nip->da = NULL; |
| 61 |
|
/* caller must assign spt[] array */ |
| 62 |
|
return(nip); |
| 63 |
|
} |
| 72 |
|
interp2_free(ip); |
| 73 |
|
return(NULL); |
| 74 |
|
} |
| 75 |
< |
if (nsamps == ip->ns); |
| 75 |
> |
if (nsamps == ip->ns) |
| 76 |
|
return(ip); |
| 77 |
< |
if (ip->ra != NULL) { /* will need to recompute distribution */ |
| 78 |
< |
free(ip->ra); |
| 79 |
< |
ip->ra = NULL; |
| 77 |
> |
if (ip->da != NULL) { /* will need to recompute distribution */ |
| 78 |
> |
free(ip->da); |
| 79 |
> |
ip->da = NULL; |
| 80 |
|
} |
| 81 |
|
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); |
| 82 |
|
if (ip == NULL) |
| 85 |
|
return(ip); |
| 86 |
|
} |
| 87 |
|
|
| 88 |
+ |
/* Set minimum distance under which samples will start to merge */ |
| 89 |
+ |
void |
| 90 |
+ |
interp2_spacing(INTERP2 *ip, double mind) |
| 91 |
+ |
{ |
| 92 |
+ |
if (mind <= 0) |
| 93 |
+ |
return; |
| 94 |
+ |
if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin)) |
| 95 |
+ |
return; |
| 96 |
+ |
if (ip->da != NULL) { /* will need to recompute distribution */ |
| 97 |
+ |
free(ip->da); |
| 98 |
+ |
ip->da = NULL; |
| 99 |
+ |
} |
| 100 |
+ |
ip->dmin = mind; |
| 101 |
+ |
} |
| 102 |
+ |
|
| 103 |
+ |
/* Modify smoothing parameter by the given factor */ |
| 104 |
+ |
void |
| 105 |
+ |
interp2_smooth(INTERP2 *ip, double sf) |
| 106 |
+ |
{ |
| 107 |
+ |
if ((ip->smf *= sf) < NI2DSMF) |
| 108 |
+ |
ip->smf = NI2DSMF; |
| 109 |
+ |
} |
| 110 |
+ |
|
| 111 |
|
/* private call-back to sort position index */ |
| 112 |
|
static int |
| 113 |
|
cmp_spos(const void *p1, const void *p2) |
| 137 |
|
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); |
| 138 |
|
} |
| 139 |
|
|
| 140 |
< |
/* private routine to encode radius with range checks */ |
| 140 |
> |
/* private routine to encode sample diameter with range checks */ |
| 141 |
|
static int |
| 142 |
< |
encode_radius(const INTERP2 *ip, double r) |
| 142 |
> |
encode_diameter(const INTERP2 *ip, double d) |
| 143 |
|
{ |
| 144 |
< |
const int er = ENCODE_RAD(ip, r); |
| 144 |
> |
const int ed = ENCODE_DIA(ip, d); |
| 145 |
|
|
| 146 |
< |
if (er <= 0) |
| 146 |
> |
if (ed <= 0) |
| 147 |
|
return(0); |
| 148 |
< |
if (er >= 0xffff) |
| 148 |
> |
if (ed >= 0xffff) |
| 149 |
|
return(0xffff); |
| 150 |
< |
return(er); |
| 150 |
> |
return(ed); |
| 151 |
|
} |
| 152 |
|
|
| 153 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
| 156 |
|
{ |
| 157 |
|
SAMPORD *sortord; |
| 158 |
|
int *rightrndx, *leftrndx, *endrndx; |
| 159 |
< |
int bd; |
| 159 |
> |
int i, bd; |
| 160 |
|
/* sanity checks */ |
| 161 |
< |
if (ip == NULL || (ip->ns <= 1) | (ip->rmin <= 0)) |
| 161 |
> |
if (ip == NULL) |
| 162 |
|
return(0); |
| 163 |
< |
/* need to allocate? */ |
| 164 |
< |
if (ip->ra == NULL) { |
| 165 |
< |
ip->ra = (unsigned short (*)[NI2DIR])malloc( |
| 142 |
< |
sizeof(unsigned short)*NI2DIR*ip->ns); |
| 143 |
< |
if (ip->ra == NULL) |
| 144 |
< |
return(0); |
| 163 |
> |
if (ip->da != NULL) { /* free previous data if any */ |
| 164 |
> |
free(ip->da); |
| 165 |
> |
ip->da = NULL; |
| 166 |
|
} |
| 167 |
+ |
if ((ip->ns <= 1) | (ip->dmin <= 0)) |
| 168 |
+ |
return(0); |
| 169 |
+ |
/* compute sample domain */ |
| 170 |
+ |
ip->smin[0] = ip->smin[1] = FHUGE; |
| 171 |
+ |
ip->smul[0] = ip->smul[1] = -FHUGE; |
| 172 |
+ |
for (i = ip->ns; i--; ) { |
| 173 |
+ |
if (ip->spt[i][0] < ip->smin[0]) |
| 174 |
+ |
ip->smin[0] = ip->spt[i][0]; |
| 175 |
+ |
if (ip->spt[i][0] > ip->smul[0]) |
| 176 |
+ |
ip->smul[0] = ip->spt[i][0]; |
| 177 |
+ |
if (ip->spt[i][1] < ip->smin[1]) |
| 178 |
+ |
ip->smin[1] = ip->spt[i][1]; |
| 179 |
+ |
if (ip->spt[i][1] > ip->smul[1]) |
| 180 |
+ |
ip->smul[1] = ip->spt[i][1]; |
| 181 |
+ |
} |
| 182 |
+ |
ip->smul[0] -= ip->smin[0]; |
| 183 |
+ |
ip->smul[1] -= ip->smin[1]; |
| 184 |
+ |
ip->grid2 = (ip->smul[0]*ip->smul[0] + ip->smul[1]*ip->smul[1]) * |
| 185 |
+ |
(4./NI2DIM/NI2DIM); |
| 186 |
+ |
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) |
| 187 |
+ |
return(0); |
| 188 |
+ |
if (ip->smul[0] > FTINY) |
| 189 |
+ |
ip->smul[0] = NI2DIM / ip->smul[0]; |
| 190 |
+ |
if (ip->smul[1] > FTINY) |
| 191 |
+ |
ip->smul[1] = NI2DIM / ip->smul[1]; |
| 192 |
+ |
/* allocate analysis data */ |
| 193 |
+ |
ip->da = (struct interp2_samp *)calloc( ip->ns, |
| 194 |
+ |
sizeof(struct interp2_samp) ); |
| 195 |
+ |
if (ip->da == NULL) |
| 196 |
+ |
return(0); |
| 197 |
|
/* get temporary arrays */ |
| 198 |
|
sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns); |
| 199 |
|
rightrndx = (int *)malloc(sizeof(int)*ip->ns); |
| 206 |
|
for (bd = 0; bd < NI2DIR/2; bd++) { |
| 207 |
|
const double ang = 2.*PI/NI2DIR*bd; |
| 208 |
|
int *sptr; |
| 158 |
– |
int i; |
| 209 |
|
/* create right reverse index */ |
| 210 |
|
if (bd) { /* re-use from previous iteration? */ |
| 211 |
|
sptr = rightrndx; |
| 236 |
|
const int ii = sortord[i].si; |
| 237 |
|
int j; |
| 238 |
|
/* preload with large radii */ |
| 239 |
< |
ip->ra[ii][bd] = ip->ra[ii][bd+NI2DIR/2] = encode_radius(ip, |
| 240 |
< |
.25*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 239 |
> |
ip->da[ii].dia[bd] = |
| 240 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
| 241 |
> |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 242 |
|
for (j = i; ++j < ip->ns; ) /* nearest above */ |
| 243 |
|
if (rightrndx[sortord[j].si] > rightrndx[ii] && |
| 244 |
|
leftrndx[sortord[j].si] < leftrndx[ii]) { |
| 245 |
< |
ip->ra[ii][bd] = encode_radius(ip, |
| 246 |
< |
.5*(sortord[j].dm - sortord[i].dm)); |
| 245 |
> |
ip->da[ii].dia[bd] = encode_diameter(ip, |
| 246 |
> |
sortord[j].dm - sortord[i].dm); |
| 247 |
|
break; |
| 248 |
|
} |
| 249 |
|
for (j = i; j-- > 0; ) /* nearest below */ |
| 250 |
|
if (rightrndx[sortord[j].si] < rightrndx[ii] && |
| 251 |
|
leftrndx[sortord[j].si] > leftrndx[ii]) { |
| 252 |
< |
ip->ra[ii][bd+NI2DIR/2] = encode_radius(ip, |
| 253 |
< |
.5*(sortord[i].dm - sortord[j].dm)); |
| 252 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
| 253 |
> |
sortord[i].dm - sortord[j].dm); |
| 254 |
|
break; |
| 255 |
|
} |
| 256 |
|
} |
| 262 |
|
return(1); |
| 263 |
|
} |
| 264 |
|
|
| 265 |
< |
/* private call returns raw weight for a particular sample */ |
| 266 |
< |
static double |
| 267 |
< |
get_wt(const INTERP2 *ip, const int i, double x, double y) |
| 265 |
> |
/* Compute unnormalized weight for a position relative to a sample */ |
| 266 |
> |
double |
| 267 |
> |
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
| 268 |
|
{ |
| 269 |
< |
double dir, rd, d2; |
| 269 |
> |
int xfi, yfi; |
| 270 |
> |
double dir, rd, r2, d2; |
| 271 |
|
int ri; |
| 272 |
< |
/* get relative direction */ |
| 273 |
< |
x -= ip->spt[i][0]; |
| 272 |
> |
/* need to compute interpolant? */ |
| 273 |
> |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 274 |
> |
return(0); |
| 275 |
> |
/* get grid position */ |
| 276 |
> |
xfi = (x - ip->smin[0]) * ip->smul[0]; |
| 277 |
> |
if (xfi >= NI2DIM) |
| 278 |
> |
xfi = NI2DIM-1; |
| 279 |
> |
else |
| 280 |
> |
xfi *= (xfi >= 0); |
| 281 |
> |
yfi = (y - ip->smin[1]) * ip->smul[1]; |
| 282 |
> |
if (yfi >= NI2DIM) |
| 283 |
> |
yfi = NI2DIM-1; |
| 284 |
> |
else |
| 285 |
> |
yfi *= (yfi >= 0); |
| 286 |
> |
x -= ip->spt[i][0]; /* check distance */ |
| 287 |
|
y -= ip->spt[i][1]; |
| 288 |
< |
dir = atan2a(y, x); |
| 288 |
> |
d2 = x*x + y*y; |
| 289 |
> |
/* zero weight this zone? */ |
| 290 |
> |
if (d2 > ip->grid2 && ip->da[i].blkflg[yfi] & 1<<xfi) |
| 291 |
> |
return(.0); |
| 292 |
> |
|
| 293 |
> |
dir = atan2a(y, x); /* get relative direction */ |
| 294 |
|
dir += 2.*PI*(dir < 0); |
| 295 |
|
/* linear radius interpolation */ |
| 296 |
|
rd = dir * (NI2DIR/2./PI); |
| 297 |
|
ri = (int)rd; |
| 298 |
|
rd -= (double)ri; |
| 299 |
< |
rd = (1.-rd)*ip->ra[i][ri] + rd*ip->ra[i][(ri+1)%NI2DIR]; |
| 300 |
< |
rd = ip->smf * DECODE_RAD(ip, rd); |
| 301 |
< |
d2 = x*x + y*y; |
| 299 |
> |
rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR]; |
| 300 |
> |
rd = ip->smf * DECODE_DIA(ip, rd); |
| 301 |
> |
r2 = 2.*rd*rd; |
| 302 |
> |
if (d2 > 21.*r2) { /* result would be < 1e-9 */ |
| 303 |
> |
ip->da[i].blkflg[yfi] |= 1<<xfi; |
| 304 |
> |
return(.0); |
| 305 |
> |
} |
| 306 |
|
/* Gaussian times harmonic weighting */ |
| 307 |
< |
return( exp(d2/(-2.*rd*rd)) * ip->rmin/(ip->rmin + sqrt(d2)) ); |
| 307 |
> |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
| 308 |
|
} |
| 309 |
|
|
| 310 |
|
/* Assign full set of normalized weights to interpolate the given position */ |
| 316 |
|
|
| 317 |
|
if ((wtv == NULL) | (ip == NULL)) |
| 318 |
|
return(0); |
| 245 |
– |
/* need to compute interpolant? */ |
| 246 |
– |
if (ip->ra == NULL && !interp2_analyze(ip)) |
| 247 |
– |
return(0); |
| 319 |
|
|
| 320 |
|
wnorm = 0; /* compute raw weights */ |
| 321 |
|
for (i = ip->ns; i--; ) { |
| 322 |
< |
double wt = get_wt(ip, i, x, y); |
| 322 |
> |
double wt = interp2_wti(ip, i, x, y); |
| 323 |
|
wtv[i] = wt; |
| 324 |
|
wnorm += wt; |
| 325 |
|
} |
| 342 |
|
|
| 343 |
|
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) |
| 344 |
|
return(0); |
| 274 |
– |
/* need to compute interpolant? */ |
| 275 |
– |
if (ip->ra == NULL && !interp2_analyze(ip)) |
| 276 |
– |
return(0); |
| 345 |
|
/* identify top n weights */ |
| 346 |
|
for (i = ip->ns; i--; ) { |
| 347 |
< |
const double wti = get_wt(ip, i, x, y); |
| 347 |
> |
const double wti = interp2_wti(ip, i, x, y); |
| 348 |
> |
if (wti <= 1e-9) |
| 349 |
> |
continue; |
| 350 |
|
for (j = nn; j > 0; j--) { |
| 351 |
|
if (wt[j-1] >= wti) |
| 352 |
|
break; |
| 378 |
|
{ |
| 379 |
|
if (ip == NULL) |
| 380 |
|
return; |
| 381 |
< |
if (ip->ra != NULL) |
| 382 |
< |
free(ip->ra); |
| 381 |
> |
if (ip->da != NULL) |
| 382 |
> |
free(ip->da); |
| 383 |
|
free(ip); |
| 384 |
|
} |