23 |
|
* to reduce the influence of distant neighbors. This yields a |
24 |
|
* smooth interpolation regardless of how the sample points are |
25 |
|
* initially distributed. Evaluation is accelerated by use of |
26 |
< |
* a fast approximation to the atan2(y,x) function and an array |
27 |
< |
* of flags indicating where weights are (nearly) zero. |
26 |
> |
* a fast approximation to the atan2(y,x) function and a low-res |
27 |
> |
* map indicating where sample weights are significant. |
28 |
|
****************************************************************/ |
29 |
|
|
30 |
|
#include <stdio.h> |
41 |
|
float dm; /* distance measure in this direction */ |
42 |
|
} SAMPORD; |
43 |
|
|
44 |
+ |
/* private routine to encode sample diameter with range checks */ |
45 |
+ |
static int |
46 |
+ |
encode_diameter(const INTERP2 *ip, double d) |
47 |
+ |
{ |
48 |
+ |
const int ed = ENCODE_DIA(ip, d); |
49 |
+ |
|
50 |
+ |
if (ed <= 0) |
51 |
+ |
return(0); |
52 |
+ |
if (ed >= 0xffff) |
53 |
+ |
return(0xffff); |
54 |
+ |
return(ed); |
55 |
+ |
} |
56 |
+ |
|
57 |
|
/* Allocate a new set of interpolation samples (caller assigns spt[] array) */ |
58 |
|
INTERP2 * |
59 |
|
interp2_alloc(int nsamps) |
70 |
|
nip->ns = nsamps; |
71 |
|
nip->dmin = 1; /* default minimum diameter */ |
72 |
|
nip->smf = NI2DSMF; /* default smoothing factor */ |
73 |
+ |
nip->c_data = NULL; |
74 |
|
nip->da = NULL; |
75 |
|
/* caller must assign spt[] array */ |
76 |
|
return(nip); |
80 |
|
INTERP2 * |
81 |
|
interp2_realloc(INTERP2 *ip, int nsamps) |
82 |
|
{ |
83 |
+ |
INTERP2 *old_ip = ip; |
84 |
+ |
|
85 |
|
if (ip == NULL) |
86 |
|
return(interp2_alloc(nsamps)); |
87 |
|
if (nsamps <= 1) { |
95 |
|
ip->da = NULL; |
96 |
|
} |
97 |
|
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); |
98 |
< |
if (ip == NULL) |
99 |
< |
return(NULL); |
98 |
> |
if (ip == NULL) { |
99 |
> |
if (nsamps <= ip->ns) { |
100 |
> |
ip = old_ip; |
101 |
> |
} else { |
102 |
> |
free(old_ip); |
103 |
> |
return(NULL); |
104 |
> |
} |
105 |
> |
} |
106 |
|
ip->ns = nsamps; |
107 |
|
return(ip); |
108 |
|
} |
122 |
|
ip->dmin = mind; |
123 |
|
} |
124 |
|
|
103 |
– |
/* Modify smoothing parameter by the given factor */ |
104 |
– |
void |
105 |
– |
interp2_smooth(INTERP2 *ip, double sf) |
106 |
– |
{ |
107 |
– |
if ((ip->smf *= sf) < NI2DSMF) |
108 |
– |
ip->smf = NI2DSMF; |
109 |
– |
} |
110 |
– |
|
111 |
– |
/* private call-back to sort position index */ |
112 |
– |
static int |
113 |
– |
cmp_spos(const void *p1, const void *p2) |
114 |
– |
{ |
115 |
– |
const SAMPORD *so1 = (const SAMPORD *)p1; |
116 |
– |
const SAMPORD *so2 = (const SAMPORD *)p2; |
117 |
– |
|
118 |
– |
if (so1->dm > so2->dm) |
119 |
– |
return 1; |
120 |
– |
if (so1->dm < so2->dm) |
121 |
– |
return -1; |
122 |
– |
return 0; |
123 |
– |
} |
124 |
– |
|
125 |
– |
/* private routine to order samples in a particular direction */ |
126 |
– |
static void |
127 |
– |
sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang) |
128 |
– |
{ |
129 |
– |
const double cosd = cos(ang); |
130 |
– |
const double sind = sin(ang); |
131 |
– |
int i; |
132 |
– |
|
133 |
– |
for (i = ip->ns; i--; ) { |
134 |
– |
sord[i].si = i; |
135 |
– |
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; |
136 |
– |
} |
137 |
– |
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); |
138 |
– |
} |
139 |
– |
|
140 |
– |
/* private routine to encode sample diameter with range checks */ |
141 |
– |
static int |
142 |
– |
encode_diameter(const INTERP2 *ip, double d) |
143 |
– |
{ |
144 |
– |
const int ed = ENCODE_DIA(ip, d); |
145 |
– |
|
146 |
– |
if (ed <= 0) |
147 |
– |
return(0); |
148 |
– |
if (ed >= 0xffff) |
149 |
– |
return(0xffff); |
150 |
– |
return(ed); |
151 |
– |
} |
152 |
– |
|
125 |
|
/* Compute unnormalized weight for a position relative to a sample */ |
126 |
|
double |
127 |
|
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
216 |
|
influence_flood(ip, i, visited, xfi, yfi+1); |
217 |
|
} |
218 |
|
|
219 |
+ |
/* private call to compute sample influence maps */ |
220 |
+ |
static void |
221 |
+ |
map_influence(INTERP2 *ip) |
222 |
+ |
{ |
223 |
+ |
unsigned short visited[NI2DIM]; |
224 |
+ |
int fgi[2]; |
225 |
+ |
int i, j; |
226 |
+ |
|
227 |
+ |
for (i = ip->ns; i--; ) { |
228 |
+ |
for (j = NI2DIM; j--; ) { |
229 |
+ |
ip->da[i].infl[j] = 0; |
230 |
+ |
visited[j] = 0; |
231 |
+ |
} |
232 |
+ |
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); |
233 |
+ |
|
234 |
+ |
influence_flood(ip, i, visited, fgi[0], fgi[1]); |
235 |
+ |
} |
236 |
+ |
} |
237 |
+ |
|
238 |
+ |
/* Modify smoothing parameter by the given factor */ |
239 |
+ |
void |
240 |
+ |
interp2_smooth(INTERP2 *ip, double sf) |
241 |
+ |
{ |
242 |
+ |
float old_smf = ip->smf; |
243 |
+ |
|
244 |
+ |
if ((ip->smf *= sf) < NI2DSMF) |
245 |
+ |
ip->smf = NI2DSMF; |
246 |
+ |
/* need to recompute influence maps? */ |
247 |
+ |
if (ip->da != NULL && (old_smf*.85 > ip->smf) | |
248 |
+ |
(ip->smf > old_smf*1.15)) |
249 |
+ |
map_influence(ip); |
250 |
+ |
} |
251 |
+ |
|
252 |
+ |
/* private call-back to sort position index */ |
253 |
+ |
static int |
254 |
+ |
cmp_spos(const void *p1, const void *p2) |
255 |
+ |
{ |
256 |
+ |
const SAMPORD *so1 = (const SAMPORD *)p1; |
257 |
+ |
const SAMPORD *so2 = (const SAMPORD *)p2; |
258 |
+ |
|
259 |
+ |
if (so1->dm > so2->dm) |
260 |
+ |
return 1; |
261 |
+ |
if (so1->dm < so2->dm) |
262 |
+ |
return -1; |
263 |
+ |
return 0; |
264 |
+ |
} |
265 |
+ |
|
266 |
+ |
/* private routine to order samples in a particular direction */ |
267 |
+ |
static void |
268 |
+ |
sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang) |
269 |
+ |
{ |
270 |
+ |
const double cosd = cos(ang); |
271 |
+ |
const double sind = sin(ang); |
272 |
+ |
int i; |
273 |
+ |
|
274 |
+ |
for (i = ip->ns; i--; ) { |
275 |
+ |
sord[i].si = i; |
276 |
+ |
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; |
277 |
+ |
} |
278 |
+ |
qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos); |
279 |
+ |
} |
280 |
+ |
|
281 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
282 |
|
int |
283 |
|
interp2_analyze(INTERP2 *ip) |
284 |
|
{ |
285 |
|
SAMPORD *sortord; |
286 |
|
int *rightrndx, *leftrndx, *endrndx; |
287 |
< |
int i, j, bd; |
287 |
> |
int i, bd; |
288 |
|
/* sanity checks */ |
289 |
|
if (ip == NULL) |
290 |
|
return(0); |
309 |
|
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) |
310 |
|
return(0); |
311 |
|
/* allocate analysis data */ |
312 |
< |
ip->da = (struct interp2_samp *)calloc( ip->ns, |
313 |
< |
sizeof(struct interp2_samp) ); |
312 |
> |
ip->da = (struct interp2_samp *)malloc( |
313 |
> |
sizeof(struct interp2_samp)*ip->ns ); |
314 |
|
if (ip->da == NULL) |
315 |
|
return(0); |
316 |
|
/* allocate temporary arrays */ |
353 |
|
/* find nearest neighbors each side */ |
354 |
|
for (i = ip->ns; i--; ) { |
355 |
|
const int ii = sortord[i].si; |
356 |
+ |
int j; |
357 |
|
/* preload with large radii */ |
358 |
|
ip->da[ii].dia[bd] = |
359 |
|
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
378 |
|
free(rightrndx); |
379 |
|
free(leftrndx); |
380 |
|
free(endrndx); |
381 |
< |
/* fill influence maps */ |
382 |
< |
for (i = ip->ns; i--; ) { |
348 |
< |
unsigned short visited[NI2DIM]; |
349 |
< |
int fgi[2]; |
350 |
< |
|
351 |
< |
for (j = NI2DIM; j--; ) visited[j] = 0; |
352 |
< |
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); |
353 |
< |
influence_flood(ip, i, visited, fgi[0], fgi[1]); |
354 |
< |
} |
381 |
> |
/* map sample influence areas */ |
382 |
> |
map_influence(ip); |
383 |
|
return(1); /* all done */ |
384 |
|
} |
385 |
|
|