| 23 |
|
* to reduce the influence of distant neighbors. This yields a |
| 24 |
|
* smooth interpolation regardless of how the sample points are |
| 25 |
|
* initially distributed. Evaluation is accelerated by use of |
| 26 |
< |
* a fast approximation to the atan2(y,x) function. |
| 26 |
> |
* a fast approximation to the atan2(y,x) function and an array |
| 27 |
> |
* of flags indicating where weights are (nearly) zero. |
| 28 |
|
****************************************************************/ |
| 29 |
|
|
| 30 |
|
#include <stdio.h> |
| 150 |
|
return(ed); |
| 151 |
|
} |
| 152 |
|
|
| 153 |
+ |
/* Compute unnormalized weight for a position relative to a sample */ |
| 154 |
+ |
double |
| 155 |
+ |
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
| 156 |
+ |
{ |
| 157 |
+ |
double dir, rd, r2, d2; |
| 158 |
+ |
int ri; |
| 159 |
+ |
/* get relative direction */ |
| 160 |
+ |
x -= ip->spt[i][0]; |
| 161 |
+ |
y -= ip->spt[i][1]; |
| 162 |
+ |
dir = atan2a(y, x); |
| 163 |
+ |
dir += 2.*PI*(dir < 0); |
| 164 |
+ |
/* linear radius interpolation */ |
| 165 |
+ |
rd = dir * (NI2DIR/2./PI); |
| 166 |
+ |
ri = (int)rd; |
| 167 |
+ |
rd -= (double)ri; |
| 168 |
+ |
rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR]; |
| 169 |
+ |
rd = ip->smf * DECODE_DIA(ip, rd); |
| 170 |
+ |
r2 = 2.*rd*rd; |
| 171 |
+ |
d2 = x*x + y*y; |
| 172 |
+ |
if (d2 > 21.*r2) /* result would be < 1e-9 */ |
| 173 |
+ |
return(.0); |
| 174 |
+ |
/* Gaussian times harmonic weighting */ |
| 175 |
+ |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
| 176 |
+ |
} |
| 177 |
+ |
|
| 178 |
+ |
/* private call to get grid flag index */ |
| 179 |
+ |
static int |
| 180 |
+ |
interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y) |
| 181 |
+ |
{ |
| 182 |
+ |
int inbounds = 0; |
| 183 |
+ |
|
| 184 |
+ |
if (ip == NULL) /* paranoia */ |
| 185 |
+ |
return(-1); |
| 186 |
+ |
/* need to compute interpolant? */ |
| 187 |
+ |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 188 |
+ |
return(-1); |
| 189 |
+ |
/* get x & y grid positions */ |
| 190 |
+ |
fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]); |
| 191 |
+ |
|
| 192 |
+ |
if (fgi[0] >= NI2DIM) |
| 193 |
+ |
fgi[0] = NI2DIM-1; |
| 194 |
+ |
else if (fgi[0] < 0) |
| 195 |
+ |
fgi[0] = 0; |
| 196 |
+ |
else |
| 197 |
+ |
++inbounds; |
| 198 |
+ |
|
| 199 |
+ |
fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]); |
| 200 |
+ |
|
| 201 |
+ |
if (fgi[1] >= NI2DIM) |
| 202 |
+ |
fgi[1] = NI2DIM-1; |
| 203 |
+ |
else if (fgi[1] < 0) |
| 204 |
+ |
fgi[1] = 0; |
| 205 |
+ |
else |
| 206 |
+ |
++inbounds; |
| 207 |
+ |
|
| 208 |
+ |
return(inbounds == 2); |
| 209 |
+ |
} |
| 210 |
+ |
|
| 211 |
+ |
#define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi)) |
| 212 |
+ |
|
| 213 |
+ |
#define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1) |
| 214 |
+ |
|
| 215 |
+ |
/* private flood function to determine sample influence */ |
| 216 |
+ |
static void |
| 217 |
+ |
influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM], |
| 218 |
+ |
int xfi, int yfi) |
| 219 |
+ |
{ |
| 220 |
+ |
double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) + |
| 221 |
+ |
ip->smin[0]; |
| 222 |
+ |
double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) + |
| 223 |
+ |
ip->smin[1]; |
| 224 |
+ |
double dx = gx - ip->spt[i][0]; |
| 225 |
+ |
double dy = gy - ip->spt[i][1]; |
| 226 |
+ |
|
| 227 |
+ |
setflg(visited, xfi, yfi); |
| 228 |
+ |
|
| 229 |
+ |
if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7) |
| 230 |
+ |
return; |
| 231 |
+ |
|
| 232 |
+ |
setflg(ip->da[i].infl, xfi, yfi); |
| 233 |
+ |
|
| 234 |
+ |
if (xfi > 0 && !chkflg(visited, xfi-1, yfi)) |
| 235 |
+ |
influence_flood(ip, i, visited, xfi-1, yfi); |
| 236 |
+ |
|
| 237 |
+ |
if (yfi > 0 && !chkflg(visited, xfi, yfi-1)) |
| 238 |
+ |
influence_flood(ip, i, visited, xfi, yfi-1); |
| 239 |
+ |
|
| 240 |
+ |
if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi)) |
| 241 |
+ |
influence_flood(ip, i, visited, xfi+1, yfi); |
| 242 |
+ |
|
| 243 |
+ |
if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1)) |
| 244 |
+ |
influence_flood(ip, i, visited, xfi, yfi+1); |
| 245 |
+ |
} |
| 246 |
+ |
|
| 247 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
| 248 |
|
int |
| 249 |
|
interp2_analyze(INTERP2 *ip) |
| 250 |
|
{ |
| 251 |
|
SAMPORD *sortord; |
| 252 |
|
int *rightrndx, *leftrndx, *endrndx; |
| 253 |
< |
int bd; |
| 253 |
> |
int i, j, bd; |
| 254 |
|
/* sanity checks */ |
| 255 |
< |
if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0)) |
| 255 |
> |
if (ip == NULL) |
| 256 |
|
return(0); |
| 257 |
< |
/* need to allocate? */ |
| 258 |
< |
if (ip->da == NULL) { |
| 259 |
< |
ip->da = (unsigned short (*)[NI2DIR])malloc( |
| 165 |
< |
sizeof(unsigned short)*NI2DIR*ip->ns); |
| 166 |
< |
if (ip->da == NULL) |
| 167 |
< |
return(0); |
| 257 |
> |
if (ip->da != NULL) { /* free previous data if any */ |
| 258 |
> |
free(ip->da); |
| 259 |
> |
ip->da = NULL; |
| 260 |
|
} |
| 261 |
< |
/* get temporary arrays */ |
| 261 |
> |
if ((ip->ns <= 1) | (ip->dmin <= 0)) |
| 262 |
> |
return(0); |
| 263 |
> |
/* compute sample domain */ |
| 264 |
> |
ip->smin[0] = ip->smin[1] = FHUGE; |
| 265 |
> |
ip->smax[0] = ip->smax[1] = -FHUGE; |
| 266 |
> |
for (i = ip->ns; i--; ) { |
| 267 |
> |
if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0]; |
| 268 |
> |
if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0]; |
| 269 |
> |
if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1]; |
| 270 |
> |
if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1]; |
| 271 |
> |
} |
| 272 |
> |
ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) + |
| 273 |
> |
(ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) * |
| 274 |
> |
(1./NI2DIM/NI2DIM); |
| 275 |
> |
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) |
| 276 |
> |
return(0); |
| 277 |
> |
/* allocate analysis data */ |
| 278 |
> |
ip->da = (struct interp2_samp *)calloc( ip->ns, |
| 279 |
> |
sizeof(struct interp2_samp) ); |
| 280 |
> |
if (ip->da == NULL) |
| 281 |
> |
return(0); |
| 282 |
> |
/* allocate temporary arrays */ |
| 283 |
|
sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns); |
| 284 |
|
rightrndx = (int *)malloc(sizeof(int)*ip->ns); |
| 285 |
|
leftrndx = (int *)malloc(sizeof(int)*ip->ns); |
| 291 |
|
for (bd = 0; bd < NI2DIR/2; bd++) { |
| 292 |
|
const double ang = 2.*PI/NI2DIR*bd; |
| 293 |
|
int *sptr; |
| 181 |
– |
int i; |
| 294 |
|
/* create right reverse index */ |
| 295 |
|
if (bd) { /* re-use from previous iteration? */ |
| 296 |
|
sptr = rightrndx; |
| 319 |
|
/* find nearest neighbors each side */ |
| 320 |
|
for (i = ip->ns; i--; ) { |
| 321 |
|
const int ii = sortord[i].si; |
| 210 |
– |
int j; |
| 322 |
|
/* preload with large radii */ |
| 323 |
< |
ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 324 |
< |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 323 |
> |
ip->da[ii].dia[bd] = |
| 324 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
| 325 |
> |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 326 |
|
for (j = i; ++j < ip->ns; ) /* nearest above */ |
| 327 |
|
if (rightrndx[sortord[j].si] > rightrndx[ii] && |
| 328 |
|
leftrndx[sortord[j].si] < leftrndx[ii]) { |
| 329 |
< |
ip->da[ii][bd] = encode_diameter(ip, |
| 329 |
> |
ip->da[ii].dia[bd] = encode_diameter(ip, |
| 330 |
|
sortord[j].dm - sortord[i].dm); |
| 331 |
|
break; |
| 332 |
|
} |
| 333 |
|
for (j = i; j-- > 0; ) /* nearest below */ |
| 334 |
|
if (rightrndx[sortord[j].si] < rightrndx[ii] && |
| 335 |
|
leftrndx[sortord[j].si] > leftrndx[ii]) { |
| 336 |
< |
ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 336 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
| 337 |
|
sortord[i].dm - sortord[j].dm); |
| 338 |
|
break; |
| 339 |
|
} |
| 340 |
|
} |
| 341 |
|
} |
| 342 |
< |
free(sortord); /* clean up */ |
| 342 |
> |
free(sortord); /* release temp arrays */ |
| 343 |
|
free(rightrndx); |
| 344 |
|
free(leftrndx); |
| 345 |
|
free(endrndx); |
| 346 |
< |
return(1); |
| 347 |
< |
} |
| 346 |
> |
/* fill influence maps */ |
| 347 |
> |
for (i = ip->ns; i--; ) { |
| 348 |
> |
unsigned short visited[NI2DIM]; |
| 349 |
> |
int fgi[2]; |
| 350 |
|
|
| 351 |
< |
/* private call returns raw weight for a particular sample */ |
| 352 |
< |
static double |
| 353 |
< |
get_wt(const INTERP2 *ip, const int i, double x, double y) |
| 354 |
< |
{ |
| 355 |
< |
double dir, rd, r2, d2; |
| 242 |
< |
int ri; |
| 243 |
< |
/* get relative direction */ |
| 244 |
< |
x -= ip->spt[i][0]; |
| 245 |
< |
y -= ip->spt[i][1]; |
| 246 |
< |
dir = atan2a(y, x); |
| 247 |
< |
dir += 2.*PI*(dir < 0); |
| 248 |
< |
/* linear radius interpolation */ |
| 249 |
< |
rd = dir * (NI2DIR/2./PI); |
| 250 |
< |
ri = (int)rd; |
| 251 |
< |
rd -= (double)ri; |
| 252 |
< |
rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR]; |
| 253 |
< |
rd = ip->smf * DECODE_DIA(ip, rd); |
| 254 |
< |
r2 = 2.*rd*rd; |
| 255 |
< |
d2 = x*x + y*y; |
| 256 |
< |
if (d2 > 21.*r2) /* result would be < 1e-9 */ |
| 257 |
< |
return(.0); |
| 258 |
< |
/* Gaussian times harmonic weighting */ |
| 259 |
< |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
| 351 |
> |
for (j = NI2DIM; j--; ) visited[j] = 0; |
| 352 |
> |
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); |
| 353 |
> |
influence_flood(ip, i, visited, fgi[0], fgi[1]); |
| 354 |
> |
} |
| 355 |
> |
return(1); /* all done */ |
| 356 |
|
} |
| 357 |
|
|
| 358 |
|
/* Assign full set of normalized weights to interpolate the given position */ |
| 360 |
|
interp2_weights(float wtv[], INTERP2 *ip, double x, double y) |
| 361 |
|
{ |
| 362 |
|
double wnorm; |
| 363 |
+ |
int fgi[2]; |
| 364 |
|
int i; |
| 365 |
|
|
| 366 |
< |
if ((wtv == NULL) | (ip == NULL)) |
| 366 |
> |
if (wtv == NULL) |
| 367 |
|
return(0); |
| 368 |
< |
/* need to compute interpolant? */ |
| 369 |
< |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 368 |
> |
/* get flag position */ |
| 369 |
> |
if (interp2_flagpos(fgi, ip, x, y) < 0) |
| 370 |
|
return(0); |
| 371 |
|
|
| 372 |
|
wnorm = 0; /* compute raw weights */ |
| 373 |
< |
for (i = ip->ns; i--; ) { |
| 374 |
< |
double wt = get_wt(ip, i, x, y); |
| 373 |
> |
for (i = ip->ns; i--; ) |
| 374 |
> |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { |
| 375 |
> |
double wt = interp2_wti(ip, i, x, y); |
| 376 |
|
wtv[i] = wt; |
| 377 |
|
wnorm += wt; |
| 378 |
< |
} |
| 378 |
> |
} else |
| 379 |
> |
wtv[i] = 0; |
| 380 |
|
if (wnorm <= 0) /* too far from all our samples! */ |
| 381 |
|
return(0); |
| 382 |
|
wnorm = 1./wnorm; /* normalize weights */ |
| 391 |
|
interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y) |
| 392 |
|
{ |
| 393 |
|
int nn = 0; |
| 394 |
+ |
int fgi[2]; |
| 395 |
|
double wnorm; |
| 396 |
|
int i, j; |
| 397 |
|
|
| 398 |
< |
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) |
| 398 |
> |
if ((n <= 0) | (wt == NULL) | (si == NULL)) |
| 399 |
|
return(0); |
| 400 |
< |
/* need to compute interpolant? */ |
| 401 |
< |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 400 |
> |
/* get flag position */ |
| 401 |
> |
if (interp2_flagpos(fgi, ip, x, y) < 0) |
| 402 |
|
return(0); |
| 403 |
|
/* identify top n weights */ |
| 404 |
< |
for (i = ip->ns; i--; ) { |
| 405 |
< |
const double wti = get_wt(ip, i, x, y); |
| 406 |
< |
if (wti <= 1e-9) |
| 307 |
< |
continue; |
| 404 |
> |
for (i = ip->ns; i--; ) |
| 405 |
> |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { |
| 406 |
> |
const double wti = interp2_wti(ip, i, x, y); |
| 407 |
|
for (j = nn; j > 0; j--) { |
| 408 |
|
if (wt[j-1] >= wti) |
| 409 |
|
break; |
| 417 |
|
si[j] = i; |
| 418 |
|
nn += (nn < n); |
| 419 |
|
} |
| 420 |
< |
} |
| 420 |
> |
} |
| 421 |
|
wnorm = 0; /* normalize sample weights */ |
| 422 |
|
for (j = nn; j--; ) |
| 423 |
|
wnorm += wt[j]; |