| 23 |
|
* to reduce the influence of distant neighbors. This yields a |
| 24 |
|
* smooth interpolation regardless of how the sample points are |
| 25 |
|
* initially distributed. Evaluation is accelerated by use of |
| 26 |
< |
* a fast approximation to the atan2(y,x) function and an array |
| 27 |
< |
* of flags indicating where weights are (nearly) zero. |
| 26 |
> |
* a fast approximation to the atan2(y,x) function and a low-res |
| 27 |
> |
* map indicating where sample weights are significant. |
| 28 |
|
****************************************************************/ |
| 29 |
|
|
| 30 |
|
#include <stdio.h> |
| 41 |
|
float dm; /* distance measure in this direction */ |
| 42 |
|
} SAMPORD; |
| 43 |
|
|
| 44 |
+ |
/* private routine to encode sample diameter with range checks */ |
| 45 |
+ |
static int |
| 46 |
+ |
encode_diameter(const INTERP2 *ip, double d) |
| 47 |
+ |
{ |
| 48 |
+ |
const int ed = ENCODE_DIA(ip, d); |
| 49 |
+ |
|
| 50 |
+ |
if (ed <= 0) |
| 51 |
+ |
return(0); |
| 52 |
+ |
if (ed >= 0xffff) |
| 53 |
+ |
return(0xffff); |
| 54 |
+ |
return(ed); |
| 55 |
+ |
} |
| 56 |
+ |
|
| 57 |
|
/* Allocate a new set of interpolation samples (caller assigns spt[] array) */ |
| 58 |
|
INTERP2 * |
| 59 |
|
interp2_alloc(int nsamps) |
| 70 |
|
nip->ns = nsamps; |
| 71 |
|
nip->dmin = 1; /* default minimum diameter */ |
| 72 |
|
nip->smf = NI2DSMF; /* default smoothing factor */ |
| 73 |
+ |
nip->c_data = NULL; |
| 74 |
|
nip->da = NULL; |
| 75 |
|
/* caller must assign spt[] array */ |
| 76 |
|
return(nip); |
| 80 |
|
INTERP2 * |
| 81 |
|
interp2_realloc(INTERP2 *ip, int nsamps) |
| 82 |
|
{ |
| 83 |
+ |
INTERP2 *old_ip = ip; |
| 84 |
+ |
|
| 85 |
|
if (ip == NULL) |
| 86 |
|
return(interp2_alloc(nsamps)); |
| 87 |
|
if (nsamps <= 1) { |
| 95 |
|
ip->da = NULL; |
| 96 |
|
} |
| 97 |
|
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); |
| 98 |
< |
if (ip == NULL) |
| 99 |
< |
return(NULL); |
| 98 |
> |
if (ip == NULL) { |
| 99 |
> |
if (nsamps <= ip->ns) { |
| 100 |
> |
ip = old_ip; |
| 101 |
> |
} else { |
| 102 |
> |
free(old_ip); |
| 103 |
> |
return(NULL); |
| 104 |
> |
} |
| 105 |
> |
} |
| 106 |
|
ip->ns = nsamps; |
| 107 |
|
return(ip); |
| 108 |
|
} |
| 122 |
|
ip->dmin = mind; |
| 123 |
|
} |
| 124 |
|
|
| 103 |
– |
/* Modify smoothing parameter by the given factor */ |
| 104 |
– |
void |
| 105 |
– |
interp2_smooth(INTERP2 *ip, double sf) |
| 106 |
– |
{ |
| 107 |
– |
if ((ip->smf *= sf) < NI2DSMF) |
| 108 |
– |
ip->smf = NI2DSMF; |
| 109 |
– |
} |
| 110 |
– |
|
| 111 |
– |
/* private call-back to sort position index */ |
| 112 |
– |
static int |
| 113 |
– |
cmp_spos(const void *p1, const void *p2) |
| 114 |
– |
{ |
| 115 |
– |
const SAMPORD *so1 = (const SAMPORD *)p1; |
| 116 |
– |
const SAMPORD *so2 = (const SAMPORD *)p2; |
| 117 |
– |
|
| 118 |
– |
if (so1->dm > so2->dm) |
| 119 |
– |
return 1; |
| 120 |
– |
if (so1->dm < so2->dm) |
| 121 |
– |
return -1; |
| 122 |
– |
return 0; |
| 123 |
– |
} |
| 124 |
– |
|
| 125 |
– |
/* private routine to order samples in a particular direction */ |
| 126 |
– |
static void |
| 127 |
– |
sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang) |
| 128 |
– |
{ |
| 129 |
– |
const double cosd = cos(ang); |
| 130 |
– |
const double sind = sin(ang); |
| 131 |
– |
int i; |
| 132 |
– |
|
| 133 |
– |
for (i = ip->ns; i--; ) { |
| 134 |
– |
sord[i].si = i; |
| 135 |
– |
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; |
| 136 |
– |
} |
| 137 |
– |
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); |
| 138 |
– |
} |
| 139 |
– |
|
| 140 |
– |
/* private routine to encode sample diameter with range checks */ |
| 141 |
– |
static int |
| 142 |
– |
encode_diameter(const INTERP2 *ip, double d) |
| 143 |
– |
{ |
| 144 |
– |
const int ed = ENCODE_DIA(ip, d); |
| 145 |
– |
|
| 146 |
– |
if (ed <= 0) |
| 147 |
– |
return(0); |
| 148 |
– |
if (ed >= 0xffff) |
| 149 |
– |
return(0xffff); |
| 150 |
– |
return(ed); |
| 151 |
– |
} |
| 152 |
– |
|
| 125 |
|
/* Compute unnormalized weight for a position relative to a sample */ |
| 126 |
|
double |
| 127 |
|
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
| 216 |
|
influence_flood(ip, i, visited, xfi, yfi+1); |
| 217 |
|
} |
| 218 |
|
|
| 219 |
+ |
/* private call to compute sample influence maps */ |
| 220 |
+ |
static void |
| 221 |
+ |
map_influence(INTERP2 *ip) |
| 222 |
+ |
{ |
| 223 |
+ |
unsigned short visited[NI2DIM]; |
| 224 |
+ |
int fgi[2]; |
| 225 |
+ |
int i, j; |
| 226 |
+ |
|
| 227 |
+ |
for (i = ip->ns; i--; ) { |
| 228 |
+ |
for (j = NI2DIM; j--; ) { |
| 229 |
+ |
ip->da[i].infl[j] = 0; |
| 230 |
+ |
visited[j] = 0; |
| 231 |
+ |
} |
| 232 |
+ |
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); |
| 233 |
+ |
|
| 234 |
+ |
influence_flood(ip, i, visited, fgi[0], fgi[1]); |
| 235 |
+ |
} |
| 236 |
+ |
} |
| 237 |
+ |
|
| 238 |
+ |
/* Modify smoothing parameter by the given factor */ |
| 239 |
+ |
void |
| 240 |
+ |
interp2_smooth(INTERP2 *ip, double sf) |
| 241 |
+ |
{ |
| 242 |
+ |
float old_smf = ip->smf; |
| 243 |
+ |
|
| 244 |
+ |
if ((ip->smf *= sf) < NI2DSMF) |
| 245 |
+ |
ip->smf = NI2DSMF; |
| 246 |
+ |
/* need to recompute influence maps? */ |
| 247 |
+ |
if (ip->da != NULL && (old_smf*.85 > ip->smf) | |
| 248 |
+ |
(ip->smf > old_smf*1.15)) |
| 249 |
+ |
map_influence(ip); |
| 250 |
+ |
} |
| 251 |
+ |
|
| 252 |
+ |
/* private call-back to sort position index */ |
| 253 |
+ |
static int |
| 254 |
+ |
cmp_spos(const void *p1, const void *p2) |
| 255 |
+ |
{ |
| 256 |
+ |
const SAMPORD *so1 = (const SAMPORD *)p1; |
| 257 |
+ |
const SAMPORD *so2 = (const SAMPORD *)p2; |
| 258 |
+ |
|
| 259 |
+ |
if (so1->dm > so2->dm) |
| 260 |
+ |
return 1; |
| 261 |
+ |
if (so1->dm < so2->dm) |
| 262 |
+ |
return -1; |
| 263 |
+ |
return 0; |
| 264 |
+ |
} |
| 265 |
+ |
|
| 266 |
+ |
/* private routine to order samples in a particular direction */ |
| 267 |
+ |
static void |
| 268 |
+ |
sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang) |
| 269 |
+ |
{ |
| 270 |
+ |
const double cosd = cos(ang); |
| 271 |
+ |
const double sind = sin(ang); |
| 272 |
+ |
int i; |
| 273 |
+ |
|
| 274 |
+ |
for (i = ip->ns; i--; ) { |
| 275 |
+ |
sord[i].si = i; |
| 276 |
+ |
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; |
| 277 |
+ |
} |
| 278 |
+ |
qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos); |
| 279 |
+ |
} |
| 280 |
+ |
|
| 281 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
| 282 |
|
int |
| 283 |
|
interp2_analyze(INTERP2 *ip) |
| 284 |
|
{ |
| 285 |
|
SAMPORD *sortord; |
| 286 |
|
int *rightrndx, *leftrndx, *endrndx; |
| 287 |
< |
int i, j, bd; |
| 287 |
> |
int i, bd; |
| 288 |
|
/* sanity checks */ |
| 289 |
|
if (ip == NULL) |
| 290 |
|
return(0); |
| 309 |
|
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) |
| 310 |
|
return(0); |
| 311 |
|
/* allocate analysis data */ |
| 312 |
< |
ip->da = (struct interp2_samp *)calloc( ip->ns, |
| 313 |
< |
sizeof(struct interp2_samp) ); |
| 312 |
> |
ip->da = (struct interp2_samp *)malloc( |
| 313 |
> |
sizeof(struct interp2_samp)*ip->ns ); |
| 314 |
|
if (ip->da == NULL) |
| 315 |
|
return(0); |
| 316 |
|
/* allocate temporary arrays */ |
| 353 |
|
/* find nearest neighbors each side */ |
| 354 |
|
for (i = ip->ns; i--; ) { |
| 355 |
|
const int ii = sortord[i].si; |
| 356 |
+ |
int j; |
| 357 |
|
/* preload with large radii */ |
| 358 |
|
ip->da[ii].dia[bd] = |
| 359 |
|
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
| 378 |
|
free(rightrndx); |
| 379 |
|
free(leftrndx); |
| 380 |
|
free(endrndx); |
| 381 |
< |
/* fill influence maps */ |
| 382 |
< |
for (i = ip->ns; i--; ) { |
| 348 |
< |
unsigned short visited[NI2DIM]; |
| 349 |
< |
int fgi[2]; |
| 350 |
< |
|
| 351 |
< |
for (j = NI2DIM; j--; ) visited[j] = 0; |
| 352 |
< |
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); |
| 353 |
< |
influence_flood(ip, i, visited, fgi[0], fgi[1]); |
| 354 |
< |
} |
| 381 |
> |
/* map sample influence areas */ |
| 382 |
> |
map_influence(ip); |
| 383 |
|
return(1); /* all done */ |
| 384 |
|
} |
| 385 |
|
|