| 17 |
|
* each of NI2DIR surrounding directions. To speed this |
| 18 |
|
* calculation, we sort the data into half-planes and apply |
| 19 |
|
* simple tests to see which neighbor is closest in each |
| 20 |
< |
* direction. Once we have our approximate neighborhood |
| 20 |
> |
* angular slice. Once we have our approximate neighborhood |
| 21 |
|
* for a sample, we can use it in a modified Gaussian weighting |
| 22 |
|
* with allowing local anisotropy. Harmonic weighting is added |
| 23 |
|
* to reduce the influence of distant neighbors. This yields a |
| 24 |
|
* smooth interpolation regardless of how the sample points are |
| 25 |
|
* initially distributed. Evaluation is accelerated by use of |
| 26 |
< |
* a fast approximation to the atan2(y,x) function. |
| 26 |
> |
* a fast approximation to the atan2(y,x) function and an array |
| 27 |
> |
* of flags indicating where weights are (nearly) zero. |
| 28 |
|
****************************************************************/ |
| 29 |
|
|
| 30 |
|
#include <stdio.h> |
| 72 |
|
interp2_free(ip); |
| 73 |
|
return(NULL); |
| 74 |
|
} |
| 75 |
< |
if (nsamps == ip->ns); |
| 75 |
> |
if (nsamps == ip->ns) |
| 76 |
|
return(ip); |
| 77 |
|
if (ip->da != NULL) { /* will need to recompute distribution */ |
| 78 |
|
free(ip->da); |
| 85 |
|
return(ip); |
| 86 |
|
} |
| 87 |
|
|
| 88 |
+ |
/* Set minimum distance under which samples will start to merge */ |
| 89 |
+ |
void |
| 90 |
+ |
interp2_spacing(INTERP2 *ip, double mind) |
| 91 |
+ |
{ |
| 92 |
+ |
if (mind <= 0) |
| 93 |
+ |
return; |
| 94 |
+ |
if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin)) |
| 95 |
+ |
return; |
| 96 |
+ |
if (ip->da != NULL) { /* will need to recompute distribution */ |
| 97 |
+ |
free(ip->da); |
| 98 |
+ |
ip->da = NULL; |
| 99 |
+ |
} |
| 100 |
+ |
ip->dmin = mind; |
| 101 |
+ |
} |
| 102 |
+ |
|
| 103 |
+ |
/* Modify smoothing parameter by the given factor */ |
| 104 |
+ |
void |
| 105 |
+ |
interp2_smooth(INTERP2 *ip, double sf) |
| 106 |
+ |
{ |
| 107 |
+ |
if ((ip->smf *= sf) < NI2DSMF) |
| 108 |
+ |
ip->smf = NI2DSMF; |
| 109 |
+ |
} |
| 110 |
+ |
|
| 111 |
|
/* private call-back to sort position index */ |
| 112 |
|
static int |
| 113 |
|
cmp_spos(const void *p1, const void *p2) |
| 156 |
|
{ |
| 157 |
|
SAMPORD *sortord; |
| 158 |
|
int *rightrndx, *leftrndx, *endrndx; |
| 159 |
< |
int bd; |
| 159 |
> |
int i, bd; |
| 160 |
|
/* sanity checks */ |
| 161 |
< |
if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0)) |
| 161 |
> |
if (ip == NULL) |
| 162 |
|
return(0); |
| 163 |
< |
/* need to allocate? */ |
| 164 |
< |
if (ip->da == NULL) { |
| 165 |
< |
ip->da = (unsigned short (*)[NI2DIR])malloc( |
| 142 |
< |
sizeof(unsigned short)*NI2DIR*ip->ns); |
| 143 |
< |
if (ip->da == NULL) |
| 144 |
< |
return(0); |
| 163 |
> |
if (ip->da != NULL) { /* free previous data if any */ |
| 164 |
> |
free(ip->da); |
| 165 |
> |
ip->da = NULL; |
| 166 |
|
} |
| 167 |
+ |
if ((ip->ns <= 1) | (ip->dmin <= 0)) |
| 168 |
+ |
return(0); |
| 169 |
+ |
/* compute sample domain */ |
| 170 |
+ |
ip->smin[0] = ip->smin[1] = FHUGE; |
| 171 |
+ |
ip->smax[0] = ip->smax[1] = -FHUGE; |
| 172 |
+ |
for (i = ip->ns; i--; ) { |
| 173 |
+ |
if (ip->spt[i][0] < ip->smin[0]) |
| 174 |
+ |
ip->smin[0] = ip->spt[i][0]; |
| 175 |
+ |
if (ip->spt[i][0] > ip->smax[0]) |
| 176 |
+ |
ip->smax[0] = ip->spt[i][0]; |
| 177 |
+ |
if (ip->spt[i][1] < ip->smin[1]) |
| 178 |
+ |
ip->smin[1] = ip->spt[i][1]; |
| 179 |
+ |
if (ip->spt[i][1] > ip->smax[1]) |
| 180 |
+ |
ip->smax[1] = ip->spt[i][1]; |
| 181 |
+ |
} |
| 182 |
+ |
ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) + |
| 183 |
+ |
(ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) * |
| 184 |
+ |
(1./NI2DIM/NI2DIM); |
| 185 |
+ |
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) |
| 186 |
+ |
return(0); |
| 187 |
+ |
/* allocate analysis data */ |
| 188 |
+ |
ip->da = (struct interp2_samp *)calloc( ip->ns, |
| 189 |
+ |
sizeof(struct interp2_samp) ); |
| 190 |
+ |
if (ip->da == NULL) |
| 191 |
+ |
return(0); |
| 192 |
|
/* get temporary arrays */ |
| 193 |
|
sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns); |
| 194 |
|
rightrndx = (int *)malloc(sizeof(int)*ip->ns); |
| 201 |
|
for (bd = 0; bd < NI2DIR/2; bd++) { |
| 202 |
|
const double ang = 2.*PI/NI2DIR*bd; |
| 203 |
|
int *sptr; |
| 158 |
– |
int i; |
| 204 |
|
/* create right reverse index */ |
| 205 |
|
if (bd) { /* re-use from previous iteration? */ |
| 206 |
|
sptr = rightrndx; |
| 231 |
|
const int ii = sortord[i].si; |
| 232 |
|
int j; |
| 233 |
|
/* preload with large radii */ |
| 234 |
< |
ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 235 |
< |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 234 |
> |
ip->da[ii].dia[bd] = |
| 235 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
| 236 |
> |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 237 |
|
for (j = i; ++j < ip->ns; ) /* nearest above */ |
| 238 |
|
if (rightrndx[sortord[j].si] > rightrndx[ii] && |
| 239 |
|
leftrndx[sortord[j].si] < leftrndx[ii]) { |
| 240 |
< |
ip->da[ii][bd] = encode_diameter(ip, |
| 240 |
> |
ip->da[ii].dia[bd] = encode_diameter(ip, |
| 241 |
|
sortord[j].dm - sortord[i].dm); |
| 242 |
|
break; |
| 243 |
|
} |
| 244 |
|
for (j = i; j-- > 0; ) /* nearest below */ |
| 245 |
|
if (rightrndx[sortord[j].si] < rightrndx[ii] && |
| 246 |
|
leftrndx[sortord[j].si] > leftrndx[ii]) { |
| 247 |
< |
ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 247 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
| 248 |
|
sortord[i].dm - sortord[j].dm); |
| 249 |
|
break; |
| 250 |
|
} |
| 257 |
|
return(1); |
| 258 |
|
} |
| 259 |
|
|
| 260 |
< |
/* private call returns raw weight for a particular sample */ |
| 261 |
< |
static double |
| 262 |
< |
get_wt(const INTERP2 *ip, const int i, double x, double y) |
| 260 |
> |
/* Compute unnormalized weight for a position relative to a sample */ |
| 261 |
> |
double |
| 262 |
> |
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
| 263 |
|
{ |
| 264 |
< |
double dir, rd, d2; |
| 265 |
< |
int ri; |
| 264 |
> |
double dir, rd, r2, d2; |
| 265 |
> |
int ri; |
| 266 |
|
/* get relative direction */ |
| 267 |
|
x -= ip->spt[i][0]; |
| 268 |
|
y -= ip->spt[i][1]; |
| 272 |
|
rd = dir * (NI2DIR/2./PI); |
| 273 |
|
ri = (int)rd; |
| 274 |
|
rd -= (double)ri; |
| 275 |
< |
rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR]; |
| 275 |
> |
rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR]; |
| 276 |
|
rd = ip->smf * DECODE_DIA(ip, rd); |
| 277 |
+ |
r2 = 2.*rd*rd; |
| 278 |
|
d2 = x*x + y*y; |
| 279 |
+ |
if (d2 > 21.*r2) /* result would be < 1e-9 */ |
| 280 |
+ |
return(.0); |
| 281 |
|
/* Gaussian times harmonic weighting */ |
| 282 |
< |
return( exp(d2/(-2.*rd*rd)) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
| 282 |
> |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
| 283 |
|
} |
| 284 |
|
|
| 285 |
+ |
/* private call to get grid flag index */ |
| 286 |
+ |
static int |
| 287 |
+ |
interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y) |
| 288 |
+ |
{ |
| 289 |
+ |
int ingrid = 1; |
| 290 |
+ |
|
| 291 |
+ |
if (ip == NULL) /* paranoia */ |
| 292 |
+ |
return(-1); |
| 293 |
+ |
/* need to compute interpolant? */ |
| 294 |
+ |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 295 |
+ |
return(-1); |
| 296 |
+ |
/* get grid position */ |
| 297 |
+ |
fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]); |
| 298 |
+ |
if (fgi[0] >= NI2DIM) { |
| 299 |
+ |
fgi[0] = NI2DIM-1; |
| 300 |
+ |
ingrid = 0; |
| 301 |
+ |
} else if (fgi[0] < 0) { |
| 302 |
+ |
fgi[0] = 0; |
| 303 |
+ |
ingrid = 0; |
| 304 |
+ |
} |
| 305 |
+ |
fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]); |
| 306 |
+ |
if (fgi[1] >= NI2DIM) { |
| 307 |
+ |
fgi[1] = NI2DIM-1; |
| 308 |
+ |
ingrid = 0; |
| 309 |
+ |
} else if (fgi[1] < 0) { |
| 310 |
+ |
fgi[1] = 0; |
| 311 |
+ |
ingrid = 0; |
| 312 |
+ |
} |
| 313 |
+ |
return(ingrid); |
| 314 |
+ |
} |
| 315 |
+ |
|
| 316 |
+ |
/* private call to set black flag if not too close to the given sample */ |
| 317 |
+ |
static void |
| 318 |
+ |
setblk(INTERP2 *ip, const int i, const int gi[2]) |
| 319 |
+ |
{ |
| 320 |
+ |
double dx = (gi[0]+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) + |
| 321 |
+ |
ip->smin[0] - ip->spt[i][0]; |
| 322 |
+ |
double dy = (gi[1]+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) + |
| 323 |
+ |
ip->smin[1] - ip->spt[i][1]; |
| 324 |
+ |
|
| 325 |
+ |
if (dx*dx + dy*dy > 2.*ip->grid2) |
| 326 |
+ |
ip->da[i].blkflg[gi[1]] |= 1<<gi[0]; |
| 327 |
+ |
} |
| 328 |
+ |
|
| 329 |
+ |
#define chkblk(ip,i,gi) ((ip)->da[i].blkflg[(gi)[1]]>>(gi)[0] & 1) |
| 330 |
+ |
|
| 331 |
|
/* Assign full set of normalized weights to interpolate the given position */ |
| 332 |
|
int |
| 333 |
|
interp2_weights(float wtv[], INTERP2 *ip, double x, double y) |
| 334 |
|
{ |
| 335 |
|
double wnorm; |
| 336 |
+ |
int fgi[2]; |
| 337 |
+ |
int ingrid; |
| 338 |
|
int i; |
| 339 |
|
|
| 340 |
< |
if ((wtv == NULL) | (ip == NULL)) |
| 340 |
> |
if (wtv == NULL) |
| 341 |
|
return(0); |
| 342 |
< |
/* need to compute interpolant? */ |
| 343 |
< |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 342 |
> |
/* get flag position */ |
| 343 |
> |
if ((ingrid = interp2_flagpos(fgi, ip, x, y)) < 0) |
| 344 |
|
return(0); |
| 345 |
|
|
| 346 |
|
wnorm = 0; /* compute raw weights */ |
| 347 |
< |
for (i = ip->ns; i--; ) { |
| 348 |
< |
double wt = get_wt(ip, i, x, y); |
| 347 |
> |
for (i = ip->ns; i--; ) |
| 348 |
> |
if (chkblk(ip, i, fgi)) { |
| 349 |
> |
wtv[i] = 0; |
| 350 |
> |
} else { |
| 351 |
> |
double wt = interp2_wti(ip, i, x, y); |
| 352 |
|
wtv[i] = wt; |
| 353 |
|
wnorm += wt; |
| 354 |
< |
} |
| 354 |
> |
if (wt <= 1e-9 && ingrid) |
| 355 |
> |
setblk(ip, i, fgi); |
| 356 |
> |
} |
| 357 |
|
if (wnorm <= 0) /* too far from all our samples! */ |
| 358 |
|
return(0); |
| 359 |
|
wnorm = 1./wnorm; /* normalize weights */ |
| 368 |
|
interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y) |
| 369 |
|
{ |
| 370 |
|
int nn = 0; |
| 371 |
+ |
int fgi[2]; |
| 372 |
+ |
int ingrid; |
| 373 |
|
double wnorm; |
| 374 |
|
int i, j; |
| 375 |
|
|
| 376 |
< |
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) |
| 376 |
> |
if ((n <= 0) | (wt == NULL) | (si == NULL)) |
| 377 |
|
return(0); |
| 378 |
< |
/* need to compute interpolant? */ |
| 379 |
< |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 378 |
> |
/* get flag position */ |
| 379 |
> |
if ((ingrid = interp2_flagpos(fgi, ip, x, y)) < 0) |
| 380 |
|
return(0); |
| 381 |
|
/* identify top n weights */ |
| 382 |
< |
for (i = ip->ns; i--; ) { |
| 383 |
< |
const double wti = get_wt(ip, i, x, y); |
| 382 |
> |
for (i = ip->ns; i--; ) |
| 383 |
> |
if (!chkblk(ip, i, fgi)) { |
| 384 |
> |
const double wti = interp2_wti(ip, i, x, y); |
| 385 |
> |
if (wti <= 1e-9) { |
| 386 |
> |
if (ingrid) |
| 387 |
> |
setblk(ip, i, fgi); |
| 388 |
> |
continue; |
| 389 |
> |
} |
| 390 |
|
for (j = nn; j > 0; j--) { |
| 391 |
|
if (wt[j-1] >= wti) |
| 392 |
|
break; |
| 400 |
|
si[j] = i; |
| 401 |
|
nn += (nn < n); |
| 402 |
|
} |
| 403 |
< |
} |
| 403 |
> |
} |
| 404 |
|
wnorm = 0; /* normalize sample weights */ |
| 405 |
|
for (j = nn; j--; ) |
| 406 |
|
wnorm += wt[j]; |