23 |
|
* to reduce the influence of distant neighbors. This yields a |
24 |
|
* smooth interpolation regardless of how the sample points are |
25 |
|
* initially distributed. Evaluation is accelerated by use of |
26 |
< |
* a fast approximation to the atan2(y,x) function and an array |
27 |
< |
* of flags indicating where weights are (nearly) zero. |
26 |
> |
* a fast approximation to the atan2(y,x) function and a low-res |
27 |
> |
* map indicating where sample weights are significant. |
28 |
|
****************************************************************/ |
29 |
|
|
30 |
|
#include <stdio.h> |
41 |
|
float dm; /* distance measure in this direction */ |
42 |
|
} SAMPORD; |
43 |
|
|
44 |
+ |
/* private routine to encode sample diameter with range checks */ |
45 |
+ |
static int |
46 |
+ |
encode_diameter(const INTERP2 *ip, double d) |
47 |
+ |
{ |
48 |
+ |
const int ed = ENCODE_DIA(ip, d); |
49 |
+ |
|
50 |
+ |
if (ed <= 0) |
51 |
+ |
return(0); |
52 |
+ |
if (ed >= 0xffff) |
53 |
+ |
return(0xffff); |
54 |
+ |
return(ed); |
55 |
+ |
} |
56 |
+ |
|
57 |
|
/* Allocate a new set of interpolation samples (caller assigns spt[] array) */ |
58 |
|
INTERP2 * |
59 |
|
interp2_alloc(int nsamps) |
70 |
|
nip->ns = nsamps; |
71 |
|
nip->dmin = 1; /* default minimum diameter */ |
72 |
|
nip->smf = NI2DSMF; /* default smoothing factor */ |
73 |
+ |
nip->c_data = NULL; |
74 |
|
nip->da = NULL; |
75 |
|
/* caller must assign spt[] array */ |
76 |
|
return(nip); |
114 |
|
ip->dmin = mind; |
115 |
|
} |
116 |
|
|
117 |
+ |
/* Compute unnormalized weight for a position relative to a sample */ |
118 |
+ |
double |
119 |
+ |
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
120 |
+ |
{ |
121 |
+ |
double dir, rd, r2, d2; |
122 |
+ |
int ri; |
123 |
+ |
/* get relative direction */ |
124 |
+ |
x -= ip->spt[i][0]; |
125 |
+ |
y -= ip->spt[i][1]; |
126 |
+ |
dir = atan2a(y, x); |
127 |
+ |
dir += 2.*PI*(dir < 0); |
128 |
+ |
/* linear radius interpolation */ |
129 |
+ |
rd = dir * (NI2DIR/2./PI); |
130 |
+ |
ri = (int)rd; |
131 |
+ |
rd -= (double)ri; |
132 |
+ |
rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR]; |
133 |
+ |
rd = ip->smf * DECODE_DIA(ip, rd); |
134 |
+ |
r2 = 2.*rd*rd; |
135 |
+ |
d2 = x*x + y*y; |
136 |
+ |
if (d2 > 21.*r2) /* result would be < 1e-9 */ |
137 |
+ |
return(.0); |
138 |
+ |
/* Gaussian times harmonic weighting */ |
139 |
+ |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
140 |
+ |
} |
141 |
+ |
|
142 |
+ |
/* private call to get grid flag index */ |
143 |
+ |
static int |
144 |
+ |
interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y) |
145 |
+ |
{ |
146 |
+ |
int inbounds = 0; |
147 |
+ |
|
148 |
+ |
if (ip == NULL) /* paranoia */ |
149 |
+ |
return(-1); |
150 |
+ |
/* need to compute interpolant? */ |
151 |
+ |
if (ip->da == NULL && !interp2_analyze(ip)) |
152 |
+ |
return(-1); |
153 |
+ |
/* get x & y grid positions */ |
154 |
+ |
fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]); |
155 |
+ |
|
156 |
+ |
if (fgi[0] >= NI2DIM) |
157 |
+ |
fgi[0] = NI2DIM-1; |
158 |
+ |
else if (fgi[0] < 0) |
159 |
+ |
fgi[0] = 0; |
160 |
+ |
else |
161 |
+ |
++inbounds; |
162 |
+ |
|
163 |
+ |
fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]); |
164 |
+ |
|
165 |
+ |
if (fgi[1] >= NI2DIM) |
166 |
+ |
fgi[1] = NI2DIM-1; |
167 |
+ |
else if (fgi[1] < 0) |
168 |
+ |
fgi[1] = 0; |
169 |
+ |
else |
170 |
+ |
++inbounds; |
171 |
+ |
|
172 |
+ |
return(inbounds == 2); |
173 |
+ |
} |
174 |
+ |
|
175 |
+ |
#define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi)) |
176 |
+ |
|
177 |
+ |
#define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1) |
178 |
+ |
|
179 |
+ |
/* private flood function to determine sample influence */ |
180 |
+ |
static void |
181 |
+ |
influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM], |
182 |
+ |
int xfi, int yfi) |
183 |
+ |
{ |
184 |
+ |
double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) + |
185 |
+ |
ip->smin[0]; |
186 |
+ |
double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) + |
187 |
+ |
ip->smin[1]; |
188 |
+ |
double dx = gx - ip->spt[i][0]; |
189 |
+ |
double dy = gy - ip->spt[i][1]; |
190 |
+ |
|
191 |
+ |
setflg(visited, xfi, yfi); |
192 |
+ |
|
193 |
+ |
if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7) |
194 |
+ |
return; |
195 |
+ |
|
196 |
+ |
setflg(ip->da[i].infl, xfi, yfi); |
197 |
+ |
|
198 |
+ |
if (xfi > 0 && !chkflg(visited, xfi-1, yfi)) |
199 |
+ |
influence_flood(ip, i, visited, xfi-1, yfi); |
200 |
+ |
|
201 |
+ |
if (yfi > 0 && !chkflg(visited, xfi, yfi-1)) |
202 |
+ |
influence_flood(ip, i, visited, xfi, yfi-1); |
203 |
+ |
|
204 |
+ |
if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi)) |
205 |
+ |
influence_flood(ip, i, visited, xfi+1, yfi); |
206 |
+ |
|
207 |
+ |
if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1)) |
208 |
+ |
influence_flood(ip, i, visited, xfi, yfi+1); |
209 |
+ |
} |
210 |
+ |
|
211 |
+ |
/* private call to compute sample influence maps */ |
212 |
+ |
static void |
213 |
+ |
map_influence(INTERP2 *ip) |
214 |
+ |
{ |
215 |
+ |
unsigned short visited[NI2DIM]; |
216 |
+ |
int fgi[2]; |
217 |
+ |
int i, j; |
218 |
+ |
|
219 |
+ |
for (i = ip->ns; i--; ) { |
220 |
+ |
for (j = NI2DIM; j--; ) { |
221 |
+ |
ip->da[i].infl[j] = 0; |
222 |
+ |
visited[j] = 0; |
223 |
+ |
} |
224 |
+ |
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); |
225 |
+ |
|
226 |
+ |
influence_flood(ip, i, visited, fgi[0], fgi[1]); |
227 |
+ |
} |
228 |
+ |
} |
229 |
+ |
|
230 |
|
/* Modify smoothing parameter by the given factor */ |
231 |
|
void |
232 |
|
interp2_smooth(INTERP2 *ip, double sf) |
233 |
|
{ |
234 |
+ |
float old_smf = ip->smf; |
235 |
+ |
|
236 |
|
if ((ip->smf *= sf) < NI2DSMF) |
237 |
|
ip->smf = NI2DSMF; |
238 |
+ |
/* need to recompute influence maps? */ |
239 |
+ |
if (ip->da != NULL && (old_smf*.85 > ip->smf) | |
240 |
+ |
(ip->smf > old_smf*1.15)) |
241 |
+ |
map_influence(ip); |
242 |
|
} |
243 |
|
|
244 |
|
/* private call-back to sort position index */ |
267 |
|
sord[i].si = i; |
268 |
|
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; |
269 |
|
} |
270 |
< |
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); |
270 |
> |
qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos); |
271 |
|
} |
272 |
|
|
140 |
– |
/* private routine to encode sample diameter with range checks */ |
141 |
– |
static int |
142 |
– |
encode_diameter(const INTERP2 *ip, double d) |
143 |
– |
{ |
144 |
– |
const int ed = ENCODE_DIA(ip, d); |
145 |
– |
|
146 |
– |
if (ed <= 0) |
147 |
– |
return(0); |
148 |
– |
if (ed >= 0xffff) |
149 |
– |
return(0xffff); |
150 |
– |
return(ed); |
151 |
– |
} |
152 |
– |
|
273 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
274 |
|
int |
275 |
|
interp2_analyze(INTERP2 *ip) |
288 |
|
return(0); |
289 |
|
/* compute sample domain */ |
290 |
|
ip->smin[0] = ip->smin[1] = FHUGE; |
291 |
< |
ip->smul[0] = ip->smul[1] = -FHUGE; |
291 |
> |
ip->smax[0] = ip->smax[1] = -FHUGE; |
292 |
|
for (i = ip->ns; i--; ) { |
293 |
< |
if (ip->spt[i][0] < ip->smin[0]) |
294 |
< |
ip->smin[0] = ip->spt[i][0]; |
295 |
< |
if (ip->spt[i][0] > ip->smul[0]) |
296 |
< |
ip->smul[0] = ip->spt[i][0]; |
177 |
< |
if (ip->spt[i][1] < ip->smin[1]) |
178 |
< |
ip->smin[1] = ip->spt[i][1]; |
179 |
< |
if (ip->spt[i][1] > ip->smul[1]) |
180 |
< |
ip->smul[1] = ip->spt[i][1]; |
293 |
> |
if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0]; |
294 |
> |
if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0]; |
295 |
> |
if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1]; |
296 |
> |
if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1]; |
297 |
|
} |
298 |
< |
ip->smul[0] -= ip->smin[0]; |
299 |
< |
ip->smul[1] -= ip->smin[1]; |
300 |
< |
ip->grid2 = (ip->smul[0]*ip->smul[0] + ip->smul[1]*ip->smul[1]) * |
185 |
< |
(4./NI2DIM/NI2DIM); |
298 |
> |
ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) + |
299 |
> |
(ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) * |
300 |
> |
(1./NI2DIM/NI2DIM); |
301 |
|
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) |
302 |
|
return(0); |
188 |
– |
if (ip->smul[0] > FTINY) |
189 |
– |
ip->smul[0] = NI2DIM / ip->smul[0]; |
190 |
– |
if (ip->smul[1] > FTINY) |
191 |
– |
ip->smul[1] = NI2DIM / ip->smul[1]; |
303 |
|
/* allocate analysis data */ |
304 |
< |
ip->da = (struct interp2_samp *)calloc( ip->ns, |
305 |
< |
sizeof(struct interp2_samp) ); |
304 |
> |
ip->da = (struct interp2_samp *)malloc( |
305 |
> |
sizeof(struct interp2_samp)*ip->ns ); |
306 |
|
if (ip->da == NULL) |
307 |
|
return(0); |
308 |
< |
/* get temporary arrays */ |
308 |
> |
/* allocate temporary arrays */ |
309 |
|
sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns); |
310 |
|
rightrndx = (int *)malloc(sizeof(int)*ip->ns); |
311 |
|
leftrndx = (int *)malloc(sizeof(int)*ip->ns); |
366 |
|
} |
367 |
|
} |
368 |
|
} |
369 |
< |
free(sortord); /* clean up */ |
369 |
> |
free(sortord); /* release temp arrays */ |
370 |
|
free(rightrndx); |
371 |
|
free(leftrndx); |
372 |
|
free(endrndx); |
373 |
< |
return(1); |
373 |
> |
/* map sample influence areas */ |
374 |
> |
map_influence(ip); |
375 |
> |
return(1); /* all done */ |
376 |
|
} |
377 |
|
|
265 |
– |
/* Compute unnormalized weight for a position relative to a sample */ |
266 |
– |
double |
267 |
– |
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
268 |
– |
{ |
269 |
– |
int xfi, yfi; |
270 |
– |
double dir, rd, r2, d2; |
271 |
– |
int ri; |
272 |
– |
/* need to compute interpolant? */ |
273 |
– |
if (ip->da == NULL && !interp2_analyze(ip)) |
274 |
– |
return(0); |
275 |
– |
/* get grid position */ |
276 |
– |
xfi = (x - ip->smin[0]) * ip->smul[0]; |
277 |
– |
if (xfi >= NI2DIM) |
278 |
– |
xfi = NI2DIM-1; |
279 |
– |
else |
280 |
– |
xfi *= (xfi >= 0); |
281 |
– |
yfi = (y - ip->smin[1]) * ip->smul[1]; |
282 |
– |
if (yfi >= NI2DIM) |
283 |
– |
yfi = NI2DIM-1; |
284 |
– |
else |
285 |
– |
yfi *= (yfi >= 0); |
286 |
– |
x -= ip->spt[i][0]; /* check distance */ |
287 |
– |
y -= ip->spt[i][1]; |
288 |
– |
d2 = x*x + y*y; |
289 |
– |
/* zero weight this zone? */ |
290 |
– |
if (d2 > ip->grid2 && ip->da[i].blkflg[yfi] & 1<<xfi) |
291 |
– |
return(.0); |
292 |
– |
|
293 |
– |
dir = atan2a(y, x); /* get relative direction */ |
294 |
– |
dir += 2.*PI*(dir < 0); |
295 |
– |
/* linear radius interpolation */ |
296 |
– |
rd = dir * (NI2DIR/2./PI); |
297 |
– |
ri = (int)rd; |
298 |
– |
rd -= (double)ri; |
299 |
– |
rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR]; |
300 |
– |
rd = ip->smf * DECODE_DIA(ip, rd); |
301 |
– |
r2 = 2.*rd*rd; |
302 |
– |
if (d2 > 21.*r2) { /* result would be < 1e-9 */ |
303 |
– |
ip->da[i].blkflg[yfi] |= 1<<xfi; |
304 |
– |
return(.0); |
305 |
– |
} |
306 |
– |
/* Gaussian times harmonic weighting */ |
307 |
– |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
308 |
– |
} |
309 |
– |
|
378 |
|
/* Assign full set of normalized weights to interpolate the given position */ |
379 |
|
int |
380 |
|
interp2_weights(float wtv[], INTERP2 *ip, double x, double y) |
381 |
|
{ |
382 |
|
double wnorm; |
383 |
+ |
int fgi[2]; |
384 |
|
int i; |
385 |
|
|
386 |
< |
if ((wtv == NULL) | (ip == NULL)) |
386 |
> |
if (wtv == NULL) |
387 |
|
return(0); |
388 |
+ |
/* get flag position */ |
389 |
+ |
if (interp2_flagpos(fgi, ip, x, y) < 0) |
390 |
+ |
return(0); |
391 |
|
|
392 |
|
wnorm = 0; /* compute raw weights */ |
393 |
< |
for (i = ip->ns; i--; ) { |
393 |
> |
for (i = ip->ns; i--; ) |
394 |
> |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { |
395 |
|
double wt = interp2_wti(ip, i, x, y); |
396 |
|
wtv[i] = wt; |
397 |
|
wnorm += wt; |
398 |
< |
} |
398 |
> |
} else |
399 |
> |
wtv[i] = 0; |
400 |
|
if (wnorm <= 0) /* too far from all our samples! */ |
401 |
|
return(0); |
402 |
|
wnorm = 1./wnorm; /* normalize weights */ |
411 |
|
interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y) |
412 |
|
{ |
413 |
|
int nn = 0; |
414 |
+ |
int fgi[2]; |
415 |
|
double wnorm; |
416 |
|
int i, j; |
417 |
|
|
418 |
< |
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) |
418 |
> |
if ((n <= 0) | (wt == NULL) | (si == NULL)) |
419 |
|
return(0); |
420 |
+ |
/* get flag position */ |
421 |
+ |
if (interp2_flagpos(fgi, ip, x, y) < 0) |
422 |
+ |
return(0); |
423 |
|
/* identify top n weights */ |
424 |
< |
for (i = ip->ns; i--; ) { |
424 |
> |
for (i = ip->ns; i--; ) |
425 |
> |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { |
426 |
|
const double wti = interp2_wti(ip, i, x, y); |
348 |
– |
if (wti <= 1e-9) |
349 |
– |
continue; |
427 |
|
for (j = nn; j > 0; j--) { |
428 |
|
if (wt[j-1] >= wti) |
429 |
|
break; |
437 |
|
si[j] = i; |
438 |
|
nn += (nn < n); |
439 |
|
} |
440 |
< |
} |
440 |
> |
} |
441 |
|
wnorm = 0; /* normalize sample weights */ |
442 |
|
for (j = nn; j--; ) |
443 |
|
wnorm += wt[j]; |