23 |
|
* to reduce the influence of distant neighbors. This yields a |
24 |
|
* smooth interpolation regardless of how the sample points are |
25 |
|
* initially distributed. Evaluation is accelerated by use of |
26 |
< |
* a fast approximation to the atan2(y,x) function. |
26 |
> |
* a fast approximation to the atan2(y,x) function and a low-res |
27 |
> |
* map indicating where sample weights are significant. |
28 |
|
****************************************************************/ |
29 |
|
|
30 |
|
#include <stdio.h> |
41 |
|
float dm; /* distance measure in this direction */ |
42 |
|
} SAMPORD; |
43 |
|
|
44 |
+ |
/* private routine to encode sample diameter with range checks */ |
45 |
+ |
static int |
46 |
+ |
encode_diameter(const INTERP2 *ip, double d) |
47 |
+ |
{ |
48 |
+ |
const int ed = ENCODE_DIA(ip, d); |
49 |
+ |
|
50 |
+ |
if (ed <= 0) |
51 |
+ |
return(0); |
52 |
+ |
if (ed >= 0xffff) |
53 |
+ |
return(0xffff); |
54 |
+ |
return(ed); |
55 |
+ |
} |
56 |
+ |
|
57 |
|
/* Allocate a new set of interpolation samples (caller assigns spt[] array) */ |
58 |
|
INTERP2 * |
59 |
|
interp2_alloc(int nsamps) |
70 |
|
nip->ns = nsamps; |
71 |
|
nip->dmin = 1; /* default minimum diameter */ |
72 |
|
nip->smf = NI2DSMF; /* default smoothing factor */ |
73 |
+ |
nip->c_data = NULL; |
74 |
|
nip->da = NULL; |
75 |
|
/* caller must assign spt[] array */ |
76 |
|
return(nip); |
80 |
|
INTERP2 * |
81 |
|
interp2_realloc(INTERP2 *ip, int nsamps) |
82 |
|
{ |
83 |
+ |
INTERP2 *old_ip = ip; |
84 |
+ |
|
85 |
|
if (ip == NULL) |
86 |
|
return(interp2_alloc(nsamps)); |
87 |
|
if (nsamps <= 1) { |
95 |
|
ip->da = NULL; |
96 |
|
} |
97 |
|
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); |
98 |
< |
if (ip == NULL) |
99 |
< |
return(NULL); |
98 |
> |
if (ip == NULL) { |
99 |
> |
if (nsamps <= ip->ns) |
100 |
> |
ip = old_ip; |
101 |
> |
else |
102 |
> |
return(NULL); |
103 |
> |
} |
104 |
|
ip->ns = nsamps; |
105 |
|
return(ip); |
106 |
|
} |
120 |
|
ip->dmin = mind; |
121 |
|
} |
122 |
|
|
123 |
+ |
/* Compute unnormalized weight for a position relative to a sample */ |
124 |
+ |
double |
125 |
+ |
interp2_wti(INTERP2 *ip, const int i, double x, double y) |
126 |
+ |
{ |
127 |
+ |
double dir, rd, r2, d2; |
128 |
+ |
int ri; |
129 |
+ |
/* get relative direction */ |
130 |
+ |
x -= ip->spt[i][0]; |
131 |
+ |
y -= ip->spt[i][1]; |
132 |
+ |
dir = atan2a(y, x); |
133 |
+ |
dir += 2.*PI*(dir < 0); |
134 |
+ |
/* linear radius interpolation */ |
135 |
+ |
rd = dir * (NI2DIR/2./PI); |
136 |
+ |
ri = (int)rd; |
137 |
+ |
rd -= (double)ri; |
138 |
+ |
rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR]; |
139 |
+ |
rd = ip->smf * DECODE_DIA(ip, rd); |
140 |
+ |
r2 = 2.*rd*rd; |
141 |
+ |
d2 = x*x + y*y; |
142 |
+ |
if (d2 > 21.*r2) /* result would be < 1e-9 */ |
143 |
+ |
return(.0); |
144 |
+ |
/* Gaussian times harmonic weighting */ |
145 |
+ |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
146 |
+ |
} |
147 |
+ |
|
148 |
+ |
/* private call to get grid flag index */ |
149 |
+ |
static int |
150 |
+ |
interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y) |
151 |
+ |
{ |
152 |
+ |
int inbounds = 0; |
153 |
+ |
|
154 |
+ |
if (ip == NULL) /* paranoia */ |
155 |
+ |
return(-1); |
156 |
+ |
/* need to compute interpolant? */ |
157 |
+ |
if (ip->da == NULL && !interp2_analyze(ip)) |
158 |
+ |
return(-1); |
159 |
+ |
/* get x & y grid positions */ |
160 |
+ |
fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]); |
161 |
+ |
|
162 |
+ |
if (fgi[0] >= NI2DIM) |
163 |
+ |
fgi[0] = NI2DIM-1; |
164 |
+ |
else if (fgi[0] < 0) |
165 |
+ |
fgi[0] = 0; |
166 |
+ |
else |
167 |
+ |
++inbounds; |
168 |
+ |
|
169 |
+ |
fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]); |
170 |
+ |
|
171 |
+ |
if (fgi[1] >= NI2DIM) |
172 |
+ |
fgi[1] = NI2DIM-1; |
173 |
+ |
else if (fgi[1] < 0) |
174 |
+ |
fgi[1] = 0; |
175 |
+ |
else |
176 |
+ |
++inbounds; |
177 |
+ |
|
178 |
+ |
return(inbounds == 2); |
179 |
+ |
} |
180 |
+ |
|
181 |
+ |
#define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi)) |
182 |
+ |
|
183 |
+ |
#define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1) |
184 |
+ |
|
185 |
+ |
/* private flood function to determine sample influence */ |
186 |
+ |
static void |
187 |
+ |
influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM], |
188 |
+ |
int xfi, int yfi) |
189 |
+ |
{ |
190 |
+ |
double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) + |
191 |
+ |
ip->smin[0]; |
192 |
+ |
double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) + |
193 |
+ |
ip->smin[1]; |
194 |
+ |
double dx = gx - ip->spt[i][0]; |
195 |
+ |
double dy = gy - ip->spt[i][1]; |
196 |
+ |
|
197 |
+ |
setflg(visited, xfi, yfi); |
198 |
+ |
|
199 |
+ |
if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7) |
200 |
+ |
return; |
201 |
+ |
|
202 |
+ |
setflg(ip->da[i].infl, xfi, yfi); |
203 |
+ |
|
204 |
+ |
if (xfi > 0 && !chkflg(visited, xfi-1, yfi)) |
205 |
+ |
influence_flood(ip, i, visited, xfi-1, yfi); |
206 |
+ |
|
207 |
+ |
if (yfi > 0 && !chkflg(visited, xfi, yfi-1)) |
208 |
+ |
influence_flood(ip, i, visited, xfi, yfi-1); |
209 |
+ |
|
210 |
+ |
if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi)) |
211 |
+ |
influence_flood(ip, i, visited, xfi+1, yfi); |
212 |
+ |
|
213 |
+ |
if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1)) |
214 |
+ |
influence_flood(ip, i, visited, xfi, yfi+1); |
215 |
+ |
} |
216 |
+ |
|
217 |
+ |
/* private call to compute sample influence maps */ |
218 |
+ |
static void |
219 |
+ |
map_influence(INTERP2 *ip) |
220 |
+ |
{ |
221 |
+ |
unsigned short visited[NI2DIM]; |
222 |
+ |
int fgi[2]; |
223 |
+ |
int i, j; |
224 |
+ |
|
225 |
+ |
for (i = ip->ns; i--; ) { |
226 |
+ |
for (j = NI2DIM; j--; ) { |
227 |
+ |
ip->da[i].infl[j] = 0; |
228 |
+ |
visited[j] = 0; |
229 |
+ |
} |
230 |
+ |
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]); |
231 |
+ |
|
232 |
+ |
influence_flood(ip, i, visited, fgi[0], fgi[1]); |
233 |
+ |
} |
234 |
+ |
} |
235 |
+ |
|
236 |
|
/* Modify smoothing parameter by the given factor */ |
237 |
|
void |
238 |
|
interp2_smooth(INTERP2 *ip, double sf) |
239 |
|
{ |
240 |
+ |
float old_smf = ip->smf; |
241 |
+ |
|
242 |
|
if ((ip->smf *= sf) < NI2DSMF) |
243 |
|
ip->smf = NI2DSMF; |
244 |
+ |
/* need to recompute influence maps? */ |
245 |
+ |
if (ip->da != NULL && (old_smf*.85 > ip->smf) | |
246 |
+ |
(ip->smf > old_smf*1.15)) |
247 |
+ |
map_influence(ip); |
248 |
|
} |
249 |
|
|
250 |
|
/* private call-back to sort position index */ |
273 |
|
sord[i].si = i; |
274 |
|
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1]; |
275 |
|
} |
276 |
< |
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); |
276 |
> |
qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos); |
277 |
|
} |
278 |
|
|
139 |
– |
/* private routine to encode sample diameter with range checks */ |
140 |
– |
static int |
141 |
– |
encode_diameter(const INTERP2 *ip, double d) |
142 |
– |
{ |
143 |
– |
const int ed = ENCODE_DIA(ip, d); |
144 |
– |
|
145 |
– |
if (ed <= 0) |
146 |
– |
return(0); |
147 |
– |
if (ed >= 0xffff) |
148 |
– |
return(0xffff); |
149 |
– |
return(ed); |
150 |
– |
} |
151 |
– |
|
279 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
280 |
|
int |
281 |
|
interp2_analyze(INTERP2 *ip) |
282 |
|
{ |
283 |
|
SAMPORD *sortord; |
284 |
|
int *rightrndx, *leftrndx, *endrndx; |
285 |
< |
int bd; |
285 |
> |
int i, bd; |
286 |
|
/* sanity checks */ |
287 |
< |
if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0)) |
287 |
> |
if (ip == NULL) |
288 |
|
return(0); |
289 |
< |
/* need to allocate? */ |
290 |
< |
if (ip->da == NULL) { |
291 |
< |
ip->da = (unsigned short (*)[NI2DIR])malloc( |
165 |
< |
sizeof(unsigned short)*NI2DIR*ip->ns); |
166 |
< |
if (ip->da == NULL) |
167 |
< |
return(0); |
289 |
> |
if (ip->da != NULL) { /* free previous data if any */ |
290 |
> |
free(ip->da); |
291 |
> |
ip->da = NULL; |
292 |
|
} |
293 |
< |
/* get temporary arrays */ |
293 |
> |
if ((ip->ns <= 1) | (ip->dmin <= 0)) |
294 |
> |
return(0); |
295 |
> |
/* compute sample domain */ |
296 |
> |
ip->smin[0] = ip->smin[1] = FHUGE; |
297 |
> |
ip->smax[0] = ip->smax[1] = -FHUGE; |
298 |
> |
for (i = ip->ns; i--; ) { |
299 |
> |
if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0]; |
300 |
> |
if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0]; |
301 |
> |
if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1]; |
302 |
> |
if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1]; |
303 |
> |
} |
304 |
> |
ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) + |
305 |
> |
(ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) * |
306 |
> |
(1./NI2DIM/NI2DIM); |
307 |
> |
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin) |
308 |
> |
return(0); |
309 |
> |
/* allocate analysis data */ |
310 |
> |
ip->da = (struct interp2_samp *)malloc( |
311 |
> |
sizeof(struct interp2_samp)*ip->ns ); |
312 |
> |
if (ip->da == NULL) |
313 |
> |
return(0); |
314 |
> |
/* allocate temporary arrays */ |
315 |
|
sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns); |
316 |
|
rightrndx = (int *)malloc(sizeof(int)*ip->ns); |
317 |
|
leftrndx = (int *)malloc(sizeof(int)*ip->ns); |
323 |
|
for (bd = 0; bd < NI2DIR/2; bd++) { |
324 |
|
const double ang = 2.*PI/NI2DIR*bd; |
325 |
|
int *sptr; |
181 |
– |
int i; |
326 |
|
/* create right reverse index */ |
327 |
|
if (bd) { /* re-use from previous iteration? */ |
328 |
|
sptr = rightrndx; |
353 |
|
const int ii = sortord[i].si; |
354 |
|
int j; |
355 |
|
/* preload with large radii */ |
356 |
< |
ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
357 |
< |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
356 |
> |
ip->da[ii].dia[bd] = |
357 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
358 |
> |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
359 |
|
for (j = i; ++j < ip->ns; ) /* nearest above */ |
360 |
|
if (rightrndx[sortord[j].si] > rightrndx[ii] && |
361 |
|
leftrndx[sortord[j].si] < leftrndx[ii]) { |
362 |
< |
ip->da[ii][bd] = encode_diameter(ip, |
362 |
> |
ip->da[ii].dia[bd] = encode_diameter(ip, |
363 |
|
sortord[j].dm - sortord[i].dm); |
364 |
|
break; |
365 |
|
} |
366 |
|
for (j = i; j-- > 0; ) /* nearest below */ |
367 |
|
if (rightrndx[sortord[j].si] < rightrndx[ii] && |
368 |
|
leftrndx[sortord[j].si] > leftrndx[ii]) { |
369 |
< |
ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
369 |
> |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip, |
370 |
|
sortord[i].dm - sortord[j].dm); |
371 |
|
break; |
372 |
|
} |
373 |
|
} |
374 |
|
} |
375 |
< |
free(sortord); /* clean up */ |
375 |
> |
free(sortord); /* release temp arrays */ |
376 |
|
free(rightrndx); |
377 |
|
free(leftrndx); |
378 |
|
free(endrndx); |
379 |
< |
return(1); |
379 |
> |
/* map sample influence areas */ |
380 |
> |
map_influence(ip); |
381 |
> |
return(1); /* all done */ |
382 |
|
} |
383 |
|
|
237 |
– |
/* private call returns raw weight for a particular sample */ |
238 |
– |
static double |
239 |
– |
get_wt(const INTERP2 *ip, const int i, double x, double y) |
240 |
– |
{ |
241 |
– |
double dir, rd, r2, d2; |
242 |
– |
int ri; |
243 |
– |
/* get relative direction */ |
244 |
– |
x -= ip->spt[i][0]; |
245 |
– |
y -= ip->spt[i][1]; |
246 |
– |
dir = atan2a(y, x); |
247 |
– |
dir += 2.*PI*(dir < 0); |
248 |
– |
/* linear radius interpolation */ |
249 |
– |
rd = dir * (NI2DIR/2./PI); |
250 |
– |
ri = (int)rd; |
251 |
– |
rd -= (double)ri; |
252 |
– |
rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR]; |
253 |
– |
rd = ip->smf * DECODE_DIA(ip, rd); |
254 |
– |
r2 = 2.*rd*rd; |
255 |
– |
d2 = x*x + y*y; |
256 |
– |
if (d2 > 21.*r2) /* result would be < 1e-9 */ |
257 |
– |
return(.0); |
258 |
– |
/* Gaussian times harmonic weighting */ |
259 |
– |
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
260 |
– |
} |
261 |
– |
|
384 |
|
/* Assign full set of normalized weights to interpolate the given position */ |
385 |
|
int |
386 |
|
interp2_weights(float wtv[], INTERP2 *ip, double x, double y) |
387 |
|
{ |
388 |
|
double wnorm; |
389 |
+ |
int fgi[2]; |
390 |
|
int i; |
391 |
|
|
392 |
< |
if ((wtv == NULL) | (ip == NULL)) |
392 |
> |
if (wtv == NULL) |
393 |
|
return(0); |
394 |
< |
/* need to compute interpolant? */ |
395 |
< |
if (ip->da == NULL && !interp2_analyze(ip)) |
394 |
> |
/* get flag position */ |
395 |
> |
if (interp2_flagpos(fgi, ip, x, y) < 0) |
396 |
|
return(0); |
397 |
|
|
398 |
|
wnorm = 0; /* compute raw weights */ |
399 |
< |
for (i = ip->ns; i--; ) { |
400 |
< |
double wt = get_wt(ip, i, x, y); |
399 |
> |
for (i = ip->ns; i--; ) |
400 |
> |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { |
401 |
> |
double wt = interp2_wti(ip, i, x, y); |
402 |
|
wtv[i] = wt; |
403 |
|
wnorm += wt; |
404 |
< |
} |
404 |
> |
} else |
405 |
> |
wtv[i] = 0; |
406 |
|
if (wnorm <= 0) /* too far from all our samples! */ |
407 |
|
return(0); |
408 |
|
wnorm = 1./wnorm; /* normalize weights */ |
417 |
|
interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y) |
418 |
|
{ |
419 |
|
int nn = 0; |
420 |
+ |
int fgi[2]; |
421 |
|
double wnorm; |
422 |
|
int i, j; |
423 |
|
|
424 |
< |
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) |
424 |
> |
if ((n <= 0) | (wt == NULL) | (si == NULL)) |
425 |
|
return(0); |
426 |
< |
/* need to compute interpolant? */ |
427 |
< |
if (ip->da == NULL && !interp2_analyze(ip)) |
426 |
> |
/* get flag position */ |
427 |
> |
if (interp2_flagpos(fgi, ip, x, y) < 0) |
428 |
|
return(0); |
429 |
|
/* identify top n weights */ |
430 |
< |
for (i = ip->ns; i--; ) { |
431 |
< |
const double wti = get_wt(ip, i, x, y); |
430 |
> |
for (i = ip->ns; i--; ) |
431 |
> |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) { |
432 |
> |
const double wti = interp2_wti(ip, i, x, y); |
433 |
|
for (j = nn; j > 0; j--) { |
434 |
|
if (wt[j-1] >= wti) |
435 |
|
break; |
443 |
|
si[j] = i; |
444 |
|
nn += (nn < n); |
445 |
|
} |
446 |
< |
} |
446 |
> |
} |
447 |
|
wnorm = 0; /* normalize sample weights */ |
448 |
|
for (j = nn; j--; ) |
449 |
|
wnorm += wt[j]; |