| 9 |
|
|
| 10 |
|
#include "copyright.h" |
| 11 |
|
|
| 12 |
< |
/************************************************************* |
| 12 |
> |
/*************************************************************** |
| 13 |
|
* This is a general method for 2-D interpolation similar to |
| 14 |
|
* radial basis functions but allowing for a good deal of local |
| 15 |
|
* anisotropy in the point distribution. Each sample point |
| 16 |
|
* is examined to determine the closest neighboring samples in |
| 17 |
|
* each of NI2DIR surrounding directions. To speed this |
| 18 |
< |
* calculation, we sort the data into 3 half-planes and |
| 19 |
< |
* perform simple tests to see which neighbor is closest in |
| 20 |
< |
* a each direction. Once we have our approximate neighborhood |
| 18 |
> |
* calculation, we sort the data into half-planes and apply |
| 19 |
> |
* simple tests to see which neighbor is closest in each |
| 20 |
> |
* direction. Once we have our approximate neighborhood |
| 21 |
|
* for a sample, we can use it in a modified Gaussian weighting |
| 22 |
< |
* scheme with anisotropic surround. Harmonic weighting is added |
| 22 |
> |
* with allowing local anisotropy. Harmonic weighting is added |
| 23 |
|
* to reduce the influence of distant neighbors. This yields a |
| 24 |
|
* smooth interpolation regardless of how the sample points are |
| 25 |
< |
* initiallydistributed. Evaluation is accelerated by use of a |
| 26 |
< |
* fast approximation to the atan2(y,x) function. |
| 27 |
< |
**************************************************************/ |
| 25 |
> |
* initially distributed. Evaluation is accelerated by use of |
| 26 |
> |
* a fast approximation to the atan2(y,x) function. |
| 27 |
> |
****************************************************************/ |
| 28 |
|
|
| 29 |
|
#include <stdio.h> |
| 30 |
|
#include <stdlib.h> |
| 31 |
|
#include "rtmath.h" |
| 32 |
|
#include "interp2d.h" |
| 33 |
|
|
| 34 |
< |
#define DECODE_RAD(ip,er) ((ip)->rmin*(1. + .5*(er))) |
| 35 |
< |
#define ENCODE_RAD(ip,r) ((int)(2.*(r)/(ip)->rmin) - 2) |
| 34 |
> |
#define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed))) |
| 35 |
> |
#define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2) |
| 36 |
|
|
| 37 |
|
/* Sample order (private) */ |
| 38 |
|
typedef struct { |
| 54 |
|
return(NULL); |
| 55 |
|
|
| 56 |
|
nip->ns = nsamps; |
| 57 |
< |
nip->rmin = .5; /* default radius minimum */ |
| 57 |
> |
nip->dmin = 1; /* default minimum diameter */ |
| 58 |
|
nip->smf = NI2DSMF; /* default smoothing factor */ |
| 59 |
< |
nip->ra = NULL; |
| 59 |
> |
nip->da = NULL; |
| 60 |
|
/* caller must assign spt[] array */ |
| 61 |
|
return(nip); |
| 62 |
|
} |
| 73 |
|
} |
| 74 |
|
if (nsamps == ip->ns); |
| 75 |
|
return(ip); |
| 76 |
< |
if (ip->ra != NULL) { /* will need to recompute distribution */ |
| 77 |
< |
free(ip->ra); |
| 78 |
< |
ip->ra = NULL; |
| 76 |
> |
if (ip->da != NULL) { /* will need to recompute distribution */ |
| 77 |
> |
free(ip->da); |
| 78 |
> |
ip->da = NULL; |
| 79 |
|
} |
| 80 |
|
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); |
| 81 |
|
if (ip == NULL) |
| 113 |
|
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); |
| 114 |
|
} |
| 115 |
|
|
| 116 |
< |
/* private routine to encode radius with range checks */ |
| 116 |
> |
/* private routine to encode sample diameter with range checks */ |
| 117 |
|
static int |
| 118 |
< |
encode_radius(const INTERP2 *ip, double r) |
| 118 |
> |
encode_diameter(const INTERP2 *ip, double d) |
| 119 |
|
{ |
| 120 |
< |
const int er = ENCODE_RAD(ip, r); |
| 120 |
> |
const int ed = ENCODE_DIA(ip, d); |
| 121 |
|
|
| 122 |
< |
if (er <= 0) |
| 122 |
> |
if (ed <= 0) |
| 123 |
|
return(0); |
| 124 |
< |
if (er >= 0xffff) |
| 124 |
> |
if (ed >= 0xffff) |
| 125 |
|
return(0xffff); |
| 126 |
< |
return(er); |
| 126 |
> |
return(ed); |
| 127 |
|
} |
| 128 |
|
|
| 129 |
|
/* (Re)compute anisotropic basis function interpolant (normally automatic) */ |
| 134 |
|
int *rightrndx, *leftrndx, *endrndx; |
| 135 |
|
int bd; |
| 136 |
|
/* sanity checks */ |
| 137 |
< |
if (ip == NULL || (ip->ns <= 1) | (ip->rmin <= 0)) |
| 137 |
> |
if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0)) |
| 138 |
|
return(0); |
| 139 |
|
/* need to allocate? */ |
| 140 |
< |
if (ip->ra == NULL) { |
| 141 |
< |
ip->ra = (unsigned short (*)[NI2DIR])malloc( |
| 140 |
> |
if (ip->da == NULL) { |
| 141 |
> |
ip->da = (unsigned short (*)[NI2DIR])malloc( |
| 142 |
|
sizeof(unsigned short)*NI2DIR*ip->ns); |
| 143 |
< |
if (ip->ra == NULL) |
| 143 |
> |
if (ip->da == NULL) |
| 144 |
|
return(0); |
| 145 |
|
} |
| 146 |
|
/* get temporary arrays */ |
| 186 |
|
const int ii = sortord[i].si; |
| 187 |
|
int j; |
| 188 |
|
/* preload with large radii */ |
| 189 |
< |
ip->ra[ii][bd] = ip->ra[ii][bd+NI2DIR/2] = encode_radius(ip, |
| 190 |
< |
.25*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 189 |
> |
ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 190 |
> |
.5*(sortord[ip->ns-1].dm - sortord[0].dm)); |
| 191 |
|
for (j = i; ++j < ip->ns; ) /* nearest above */ |
| 192 |
|
if (rightrndx[sortord[j].si] > rightrndx[ii] && |
| 193 |
|
leftrndx[sortord[j].si] < leftrndx[ii]) { |
| 194 |
< |
ip->ra[ii][bd] = encode_radius(ip, |
| 195 |
< |
.5*(sortord[j].dm - sortord[i].dm)); |
| 194 |
> |
ip->da[ii][bd] = encode_diameter(ip, |
| 195 |
> |
sortord[j].dm - sortord[i].dm); |
| 196 |
|
break; |
| 197 |
|
} |
| 198 |
|
for (j = i; j-- > 0; ) /* nearest below */ |
| 199 |
|
if (rightrndx[sortord[j].si] < rightrndx[ii] && |
| 200 |
|
leftrndx[sortord[j].si] > leftrndx[ii]) { |
| 201 |
< |
ip->ra[ii][bd+NI2DIR/2] = encode_radius(ip, |
| 202 |
< |
.5*(sortord[i].dm - sortord[j].dm)); |
| 201 |
> |
ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, |
| 202 |
> |
sortord[i].dm - sortord[j].dm); |
| 203 |
|
break; |
| 204 |
|
} |
| 205 |
|
} |
| 226 |
|
rd = dir * (NI2DIR/2./PI); |
| 227 |
|
ri = (int)rd; |
| 228 |
|
rd -= (double)ri; |
| 229 |
< |
rd = (1.-rd)*ip->ra[i][ri] + rd*ip->ra[i][(ri+1)%NI2DIR]; |
| 230 |
< |
rd = ip->smf * DECODE_RAD(ip, rd); |
| 229 |
> |
rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR]; |
| 230 |
> |
rd = ip->smf * DECODE_DIA(ip, rd); |
| 231 |
|
d2 = x*x + y*y; |
| 232 |
|
/* Gaussian times harmonic weighting */ |
| 233 |
< |
return( exp(d2/(-2.*rd*rd)) * ip->rmin/(ip->rmin + sqrt(d2)) ); |
| 233 |
> |
return( exp(d2/(-2.*rd*rd)) * ip->dmin/(ip->dmin + sqrt(d2)) ); |
| 234 |
|
} |
| 235 |
|
|
| 236 |
|
/* Assign full set of normalized weights to interpolate the given position */ |
| 243 |
|
if ((wtv == NULL) | (ip == NULL)) |
| 244 |
|
return(0); |
| 245 |
|
/* need to compute interpolant? */ |
| 246 |
< |
if (ip->ra == NULL && !interp2_analyze(ip)) |
| 246 |
> |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 247 |
|
return(0); |
| 248 |
|
|
| 249 |
|
wnorm = 0; /* compute raw weights */ |
| 272 |
|
if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) |
| 273 |
|
return(0); |
| 274 |
|
/* need to compute interpolant? */ |
| 275 |
< |
if (ip->ra == NULL && !interp2_analyze(ip)) |
| 275 |
> |
if (ip->da == NULL && !interp2_analyze(ip)) |
| 276 |
|
return(0); |
| 277 |
|
/* identify top n weights */ |
| 278 |
|
for (i = ip->ns; i--; ) { |
| 308 |
|
{ |
| 309 |
|
if (ip == NULL) |
| 310 |
|
return; |
| 311 |
< |
if (ip->ra != NULL) |
| 312 |
< |
free(ip->ra); |
| 311 |
> |
if (ip->da != NULL) |
| 312 |
> |
free(ip->da); |
| 313 |
|
free(ip); |
| 314 |
|
} |