--- ray/src/common/interp2d.c 2013/02/09 17:39:21 2.2 +++ ray/src/common/interp2d.c 2013/02/12 02:56:05 2.6 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: interp2d.c,v 2.2 2013/02/09 17:39:21 greg Exp $"; +static const char RCSid[] = "$Id: interp2d.c,v 2.6 2013/02/12 02:56:05 greg Exp $"; #endif /* * General interpolation method for unstructured values on 2-D plane. @@ -9,29 +9,30 @@ static const char RCSid[] = "$Id: interp2d.c,v 2.2 201 #include "copyright.h" -/************************************************************* +/*************************************************************** * This is a general method for 2-D interpolation similar to * radial basis functions but allowing for a good deal of local * anisotropy in the point distribution. Each sample point * is examined to determine the closest neighboring samples in * each of NI2DIR surrounding directions. To speed this - * calculation, we sort the data into 3 half-planes and - * perform simple tests to see which neighbor is closest in - * a each direction. Once we have our approximate neighborhood - * for a sample, we can use it in a Gaussian weighting scheme - * with anisotropic surround. This gives us a fairly smooth - * interpolation however the sample points may be initially - * distributed. Evaluation is accelerated by use of a fast - * approximation to the atan2(y,x) function. - **************************************************************/ + * calculation, we sort the data into half-planes and apply + * simple tests to see which neighbor is closest in each + * direction. Once we have our approximate neighborhood + * for a sample, we can use it in a modified Gaussian weighting + * with allowing local anisotropy. Harmonic weighting is added + * to reduce the influence of distant neighbors. This yields a + * smooth interpolation regardless of how the sample points are + * initially distributed. Evaluation is accelerated by use of + * a fast approximation to the atan2(y,x) function. + ****************************************************************/ #include #include #include "rtmath.h" #include "interp2d.h" -#define DECODE_RAD(ip,er) ((ip)->rmin*(1. + .5*(er))) -#define ENCODE_RAD(ip,r) ((int)(2.*(r)/(ip)->rmin) - 2) +#define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed))) +#define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2) /* Sample order (private) */ typedef struct { @@ -53,9 +54,9 @@ interp2_alloc(int nsamps) return(NULL); nip->ns = nsamps; - nip->rmin = .5; /* default radius minimum */ + nip->dmin = 1; /* default minimum diameter */ nip->smf = NI2DSMF; /* default smoothing factor */ - nip->ra = NULL; + nip->da = NULL; /* caller must assign spt[] array */ return(nip); } @@ -72,9 +73,9 @@ interp2_realloc(INTERP2 *ip, int nsamps) } if (nsamps == ip->ns); return(ip); - if (ip->ra != NULL) { /* will need to recompute distribution */ - free(ip->ra); - ip->ra = NULL; + if (ip->da != NULL) { /* will need to recompute distribution */ + free(ip->da); + ip->da = NULL; } ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1)); if (ip == NULL) @@ -83,6 +84,29 @@ interp2_realloc(INTERP2 *ip, int nsamps) return(ip); } +/* Set minimum distance under which samples will start to merge */ +void +interp2_spacing(INTERP2 *ip, double mind) +{ + if (mind <= 0) + return; + if ((.998*ip->dmin <= mind) && (mind <= 1.002*ip->dmin)) + return; + if (ip->da != NULL) { /* will need to recompute distribution */ + free(ip->da); + ip->da = NULL; + } + ip->dmin = mind; +} + +/* Modify smoothing parameter by the given factor */ +void +interp2_smooth(INTERP2 *ip, double sf) +{ + if ((ip->smf *= sf) < NI2DSMF) + ip->smf = NI2DSMF; +} + /* private call-back to sort position index */ static int cmp_spos(const void *p1, const void *p2) @@ -112,17 +136,17 @@ sort_samples(SAMPORD *sord, const INTERP2 *ip, double qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos); } -/* private routine to encode radius with range checks */ +/* private routine to encode sample diameter with range checks */ static int -encode_radius(const INTERP2 *ip, double r) +encode_diameter(const INTERP2 *ip, double d) { - const int er = ENCODE_RAD(ip, r); + const int ed = ENCODE_DIA(ip, d); - if (er <= 0) + if (ed <= 0) return(0); - if (er >= 0xffff) + if (ed >= 0xffff) return(0xffff); - return(er); + return(ed); } /* (Re)compute anisotropic basis function interpolant (normally automatic) */ @@ -133,13 +157,13 @@ interp2_analyze(INTERP2 *ip) int *rightrndx, *leftrndx, *endrndx; int bd; /* sanity checks */ - if (ip == NULL || (ip->ns <= 1) | (ip->rmin <= 0)) + if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0)) return(0); /* need to allocate? */ - if (ip->ra == NULL) { - ip->ra = (unsigned short (*)[NI2DIR])malloc( + if (ip->da == NULL) { + ip->da = (unsigned short (*)[NI2DIR])malloc( sizeof(unsigned short)*NI2DIR*ip->ns); - if (ip->ra == NULL) + if (ip->da == NULL) return(0); } /* get temporary arrays */ @@ -182,24 +206,23 @@ interp2_analyze(INTERP2 *ip) sort_samples(sortord, ip, ang); /* find nearest neighbors each side */ for (i = ip->ns; i--; ) { - const int rpos = rightrndx[sortord[i].si]; - const int lpos = leftrndx[sortord[i].si]; + const int ii = sortord[i].si; int j; - /* preload with large radius */ - ip->ra[i][bd] = ip->ra[i][bd+NI2DIR/2] = encode_radius(ip, - .25*(sortord[ip->ns-1].dm - sortord[0].dm)); + /* preload with large radii */ + ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, + .5*(sortord[ip->ns-1].dm - sortord[0].dm)); for (j = i; ++j < ip->ns; ) /* nearest above */ - if (rightrndx[sortord[j].si] > rpos && - leftrndx[sortord[j].si] < lpos) { - ip->ra[i][bd] = encode_radius(ip, - .5*(sortord[j].dm - sortord[i].dm)); + if (rightrndx[sortord[j].si] > rightrndx[ii] && + leftrndx[sortord[j].si] < leftrndx[ii]) { + ip->da[ii][bd] = encode_diameter(ip, + sortord[j].dm - sortord[i].dm); break; } for (j = i; j-- > 0; ) /* nearest below */ - if (rightrndx[sortord[j].si] < rpos && - leftrndx[sortord[j].si] > lpos) { - ip->ra[i][bd+NI2DIR/2] = encode_radius(ip, - .5*(sortord[i].dm - sortord[j].dm)); + if (rightrndx[sortord[j].si] < rightrndx[ii] && + leftrndx[sortord[j].si] > leftrndx[ii]) { + ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip, + sortord[i].dm - sortord[j].dm); break; } } @@ -211,11 +234,11 @@ interp2_analyze(INTERP2 *ip) return(1); } -/* private call returns log of raw weight for a particular sample */ +/* private call returns raw weight for a particular sample */ static double -get_ln_wt(const INTERP2 *ip, const int i, double x, double y) +get_wt(const INTERP2 *ip, const int i, double x, double y) { - double dir, rd; + double dir, rd, r2, d2; int ri; /* get relative direction */ x -= ip->spt[i][0]; @@ -226,10 +249,14 @@ get_ln_wt(const INTERP2 *ip, const int i, double x, do rd = dir * (NI2DIR/2./PI); ri = (int)rd; rd -= (double)ri; - rd = (1.-rd)*ip->ra[i][ri] + rd*ip->ra[i][(ri+1)%NI2DIR]; - rd = ip->smf * DECODE_RAD(ip, rd); - /* return log of Gaussian weight */ - return( (x*x + y*y) / (-2.*rd*rd) ); + rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR]; + rd = ip->smf * DECODE_DIA(ip, rd); + r2 = 2.*rd*rd; + d2 = x*x + y*y; + if (d2 > 21.*r2) /* result would be < 1e-9 */ + return(.0); + /* Gaussian times harmonic weighting */ + return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) ); } /* Assign full set of normalized weights to interpolate the given position */ @@ -242,17 +269,12 @@ interp2_weights(float wtv[], INTERP2 *ip, double x, do if ((wtv == NULL) | (ip == NULL)) return(0); /* need to compute interpolant? */ - if (ip->ra == NULL && !interp2_analyze(ip)) + if (ip->da == NULL && !interp2_analyze(ip)) return(0); wnorm = 0; /* compute raw weights */ for (i = ip->ns; i--; ) { - double wt = get_ln_wt(ip, i, x, y); - if (wt < -21.) { - wtv[i] = 0; /* ignore weights < 1e-9 */ - continue; - } - wt = exp(wt); /* Gaussian weight */ + double wt = get_wt(ip, i, x, y); wtv[i] = wt; wnorm += wt; } @@ -276,13 +298,13 @@ interp2_topsamp(float wt[], int si[], const int n, INT if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL)) return(0); /* need to compute interpolant? */ - if (ip->ra == NULL && !interp2_analyze(ip)) + if (ip->da == NULL && !interp2_analyze(ip)) return(0); /* identify top n weights */ for (i = ip->ns; i--; ) { - const double lnwt = get_ln_wt(ip, i, x, y); + const double wti = get_wt(ip, i, x, y); for (j = nn; j > 0; j--) { - if (wt[j-1] >= lnwt) + if (wt[j-1] >= wti) break; if (j < n) { wt[j] = wt[j-1]; @@ -290,17 +312,14 @@ interp2_topsamp(float wt[], int si[], const int n, INT } } if (j < n) { /* add/insert sample */ - wt[j] = lnwt; + wt[j] = wti; si[j] = i; nn += (nn < n); } } - wnorm = 0; /* exponentiate and normalize */ - for (j = nn; j--; ) { - double dwt = exp(wt[j]); - wt[j] = dwt; - wnorm += dwt; - } + wnorm = 0; /* normalize sample weights */ + for (j = nn; j--; ) + wnorm += wt[j]; if (wnorm <= 0) return(0); wnorm = 1./wnorm; @@ -315,7 +334,7 @@ interp2_free(INTERP2 *ip) { if (ip == NULL) return; - if (ip->ra != NULL) - free(ip->ra); + if (ip->da != NULL) + free(ip->da); free(ip); }