ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.5
Committed: Mon Feb 11 23:33:35 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +24 -1 lines
Log Message:
Added accessor functions for minimum spacing and smoothing parameters

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.5 static const char RCSid[] = "$Id: interp2d.c,v 2.4 2013/02/11 22:56:22 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20     * direction. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26     * a fast approximation to the atan2(y,x) function.
27     ****************************************************************/
28 greg 2.1
29     #include <stdio.h>
30     #include <stdlib.h>
31     #include "rtmath.h"
32     #include "interp2d.h"
33    
34 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
35     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
36 greg 2.1
37     /* Sample order (private) */
38     typedef struct {
39     int si; /* sample index */
40     float dm; /* distance measure in this direction */
41     } SAMPORD;
42    
43 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
44 greg 2.1 INTERP2 *
45     interp2_alloc(int nsamps)
46     {
47     INTERP2 *nip;
48    
49     if (nsamps <= 1)
50     return(NULL);
51    
52     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
53     if (nip == NULL)
54     return(NULL);
55    
56     nip->ns = nsamps;
57 greg 2.4 nip->dmin = 1; /* default minimum diameter */
58 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
59 greg 2.4 nip->da = NULL;
60 greg 2.1 /* caller must assign spt[] array */
61     return(nip);
62     }
63    
64 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
65     INTERP2 *
66     interp2_realloc(INTERP2 *ip, int nsamps)
67     {
68     if (ip == NULL)
69     return(interp2_alloc(nsamps));
70     if (nsamps <= 1) {
71     interp2_free(ip);
72     return(NULL);
73     }
74     if (nsamps == ip->ns);
75     return(ip);
76 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
77     free(ip->da);
78     ip->da = NULL;
79 greg 2.2 }
80     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
81     if (ip == NULL)
82     return(NULL);
83     ip->ns = nsamps;
84     return(ip);
85     }
86    
87 greg 2.5 /* Set minimum distance under which samples will start to merge */
88     void
89     interp2_spacing(INTERP2 *ip, double mind)
90     {
91     if (mind <= 0)
92     return;
93     if ((.998*ip->dmin <= mind) && (mind <= 1.002*ip->dmin))
94     return;
95     if (ip->da != NULL) { /* will need to recompute distribution */
96     free(ip->da);
97     ip->da = NULL;
98     }
99     ip->dmin = mind;
100     }
101    
102     /* Modify smoothing parameter by the given factor */
103     void
104     interp2_smooth(INTERP2 *ip, double sf)
105     {
106     if ((ip->smf *= sf) < NI2DSMF)
107     ip->smf = NI2DSMF;
108     }
109    
110 greg 2.1 /* private call-back to sort position index */
111     static int
112     cmp_spos(const void *p1, const void *p2)
113     {
114     const SAMPORD *so1 = (const SAMPORD *)p1;
115     const SAMPORD *so2 = (const SAMPORD *)p2;
116    
117     if (so1->dm > so2->dm)
118     return 1;
119     if (so1->dm < so2->dm)
120     return -1;
121     return 0;
122     }
123    
124 greg 2.2 /* private routine to order samples in a particular direction */
125     static void
126     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
127     {
128     const double cosd = cos(ang);
129     const double sind = sin(ang);
130     int i;
131    
132     for (i = ip->ns; i--; ) {
133     sord[i].si = i;
134     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
135     }
136     qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
137     }
138    
139 greg 2.4 /* private routine to encode sample diameter with range checks */
140 greg 2.1 static int
141 greg 2.4 encode_diameter(const INTERP2 *ip, double d)
142 greg 2.1 {
143 greg 2.4 const int ed = ENCODE_DIA(ip, d);
144 greg 2.1
145 greg 2.4 if (ed <= 0)
146 greg 2.1 return(0);
147 greg 2.4 if (ed >= 0xffff)
148 greg 2.1 return(0xffff);
149 greg 2.4 return(ed);
150 greg 2.1 }
151    
152 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
153     int
154     interp2_analyze(INTERP2 *ip)
155 greg 2.1 {
156     SAMPORD *sortord;
157 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
158 greg 2.1 int bd;
159     /* sanity checks */
160 greg 2.4 if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0))
161 greg 2.1 return(0);
162     /* need to allocate? */
163 greg 2.4 if (ip->da == NULL) {
164     ip->da = (unsigned short (*)[NI2DIR])malloc(
165 greg 2.1 sizeof(unsigned short)*NI2DIR*ip->ns);
166 greg 2.4 if (ip->da == NULL)
167 greg 2.1 return(0);
168     }
169     /* get temporary arrays */
170     sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
171     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
172     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
173 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
174     if ((sortord == NULL) | (rightrndx == NULL) |
175     (leftrndx == NULL) | (endrndx == NULL))
176 greg 2.1 return(0);
177     /* run through bidirections */
178     for (bd = 0; bd < NI2DIR/2; bd++) {
179     const double ang = 2.*PI/NI2DIR*bd;
180 greg 2.2 int *sptr;
181 greg 2.1 int i;
182     /* create right reverse index */
183 greg 2.2 if (bd) { /* re-use from previous iteration? */
184     sptr = rightrndx;
185 greg 2.1 rightrndx = leftrndx;
186     leftrndx = sptr;
187 greg 2.2 } else { /* else sort first half-plane */
188     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
189     for (i = ip->ns; i--; )
190 greg 2.1 rightrndx[sortord[i].si] = i;
191 greg 2.2 /* & store reverse order for later */
192     for (i = ip->ns; i--; )
193     endrndx[sortord[i].si] = ip->ns-1 - i;
194 greg 2.1 }
195     /* create new left reverse index */
196 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
197     sptr = leftrndx;
198     leftrndx = endrndx;
199     endrndx = sptr;
200     } else { /* else compute new half-plane */
201     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
202     for (i = ip->ns; i--; )
203     leftrndx[sortord[i].si] = i;
204 greg 2.1 }
205     /* sort grid values in this direction */
206 greg 2.2 sort_samples(sortord, ip, ang);
207 greg 2.1 /* find nearest neighbors each side */
208 greg 2.2 for (i = ip->ns; i--; ) {
209 greg 2.3 const int ii = sortord[i].si;
210 greg 2.1 int j;
211 greg 2.3 /* preload with large radii */
212 greg 2.4 ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
213     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
214 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
215 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
216     leftrndx[sortord[j].si] < leftrndx[ii]) {
217 greg 2.4 ip->da[ii][bd] = encode_diameter(ip,
218     sortord[j].dm - sortord[i].dm);
219 greg 2.1 break;
220     }
221     for (j = i; j-- > 0; ) /* nearest below */
222 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
223     leftrndx[sortord[j].si] > leftrndx[ii]) {
224 greg 2.4 ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
225     sortord[i].dm - sortord[j].dm);
226 greg 2.1 break;
227     }
228     }
229     }
230     free(sortord); /* clean up */
231     free(rightrndx);
232     free(leftrndx);
233 greg 2.2 free(endrndx);
234 greg 2.1 return(1);
235     }
236    
237 greg 2.3 /* private call returns raw weight for a particular sample */
238 greg 2.1 static double
239 greg 2.3 get_wt(const INTERP2 *ip, const int i, double x, double y)
240 greg 2.1 {
241 greg 2.3 double dir, rd, d2;
242 greg 2.1 int ri;
243     /* get relative direction */
244     x -= ip->spt[i][0];
245     y -= ip->spt[i][1];
246     dir = atan2a(y, x);
247     dir += 2.*PI*(dir < 0);
248     /* linear radius interpolation */
249     rd = dir * (NI2DIR/2./PI);
250     ri = (int)rd;
251     rd -= (double)ri;
252 greg 2.4 rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR];
253     rd = ip->smf * DECODE_DIA(ip, rd);
254 greg 2.3 d2 = x*x + y*y;
255     /* Gaussian times harmonic weighting */
256 greg 2.4 return( exp(d2/(-2.*rd*rd)) * ip->dmin/(ip->dmin + sqrt(d2)) );
257 greg 2.1 }
258    
259     /* Assign full set of normalized weights to interpolate the given position */
260     int
261     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
262     {
263     double wnorm;
264     int i;
265    
266     if ((wtv == NULL) | (ip == NULL))
267     return(0);
268     /* need to compute interpolant? */
269 greg 2.4 if (ip->da == NULL && !interp2_analyze(ip))
270 greg 2.1 return(0);
271    
272     wnorm = 0; /* compute raw weights */
273     for (i = ip->ns; i--; ) {
274 greg 2.3 double wt = get_wt(ip, i, x, y);
275 greg 2.1 wtv[i] = wt;
276     wnorm += wt;
277     }
278     if (wnorm <= 0) /* too far from all our samples! */
279     return(0);
280     wnorm = 1./wnorm; /* normalize weights */
281     for (i = ip->ns; i--; )
282     wtv[i] *= wnorm;
283     return(ip->ns); /* all done */
284     }
285    
286    
287     /* Get normalized weights and indexes for n best samples in descending order */
288     int
289     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
290     {
291     int nn = 0;
292     double wnorm;
293     int i, j;
294    
295     if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL))
296     return(0);
297     /* need to compute interpolant? */
298 greg 2.4 if (ip->da == NULL && !interp2_analyze(ip))
299 greg 2.1 return(0);
300     /* identify top n weights */
301     for (i = ip->ns; i--; ) {
302 greg 2.3 const double wti = get_wt(ip, i, x, y);
303 greg 2.1 for (j = nn; j > 0; j--) {
304 greg 2.3 if (wt[j-1] >= wti)
305 greg 2.1 break;
306     if (j < n) {
307     wt[j] = wt[j-1];
308     si[j] = si[j-1];
309     }
310     }
311     if (j < n) { /* add/insert sample */
312 greg 2.3 wt[j] = wti;
313 greg 2.1 si[j] = i;
314     nn += (nn < n);
315     }
316     }
317 greg 2.3 wnorm = 0; /* normalize sample weights */
318     for (j = nn; j--; )
319     wnorm += wt[j];
320 greg 2.1 if (wnorm <= 0)
321     return(0);
322     wnorm = 1./wnorm;
323     for (j = nn; j--; )
324     wt[j] *= wnorm;
325     return(nn); /* return actual # samples */
326     }
327    
328     /* Free interpolant */
329     void
330     interp2_free(INTERP2 *ip)
331     {
332     if (ip == NULL)
333     return;
334 greg 2.4 if (ip->da != NULL)
335     free(ip->da);
336 greg 2.1 free(ip);
337     }