ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.4
Committed: Mon Feb 11 22:56:22 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.3: +39 -39 lines
Log Message:
Changed radius specification to diameter and added usage comment

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.4 static const char RCSid[] = "$Id: interp2d.c,v 2.3 2013/02/11 20:01:15 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20     * direction. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26     * a fast approximation to the atan2(y,x) function.
27     ****************************************************************/
28 greg 2.1
29     #include <stdio.h>
30     #include <stdlib.h>
31     #include "rtmath.h"
32     #include "interp2d.h"
33    
34 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
35     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
36 greg 2.1
37     /* Sample order (private) */
38     typedef struct {
39     int si; /* sample index */
40     float dm; /* distance measure in this direction */
41     } SAMPORD;
42    
43 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
44 greg 2.1 INTERP2 *
45     interp2_alloc(int nsamps)
46     {
47     INTERP2 *nip;
48    
49     if (nsamps <= 1)
50     return(NULL);
51    
52     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
53     if (nip == NULL)
54     return(NULL);
55    
56     nip->ns = nsamps;
57 greg 2.4 nip->dmin = 1; /* default minimum diameter */
58 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
59 greg 2.4 nip->da = NULL;
60 greg 2.1 /* caller must assign spt[] array */
61     return(nip);
62     }
63    
64 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
65     INTERP2 *
66     interp2_realloc(INTERP2 *ip, int nsamps)
67     {
68     if (ip == NULL)
69     return(interp2_alloc(nsamps));
70     if (nsamps <= 1) {
71     interp2_free(ip);
72     return(NULL);
73     }
74     if (nsamps == ip->ns);
75     return(ip);
76 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
77     free(ip->da);
78     ip->da = NULL;
79 greg 2.2 }
80     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
81     if (ip == NULL)
82     return(NULL);
83     ip->ns = nsamps;
84     return(ip);
85     }
86    
87 greg 2.1 /* private call-back to sort position index */
88     static int
89     cmp_spos(const void *p1, const void *p2)
90     {
91     const SAMPORD *so1 = (const SAMPORD *)p1;
92     const SAMPORD *so2 = (const SAMPORD *)p2;
93    
94     if (so1->dm > so2->dm)
95     return 1;
96     if (so1->dm < so2->dm)
97     return -1;
98     return 0;
99     }
100    
101 greg 2.2 /* private routine to order samples in a particular direction */
102     static void
103     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
104     {
105     const double cosd = cos(ang);
106     const double sind = sin(ang);
107     int i;
108    
109     for (i = ip->ns; i--; ) {
110     sord[i].si = i;
111     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
112     }
113     qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
114     }
115    
116 greg 2.4 /* private routine to encode sample diameter with range checks */
117 greg 2.1 static int
118 greg 2.4 encode_diameter(const INTERP2 *ip, double d)
119 greg 2.1 {
120 greg 2.4 const int ed = ENCODE_DIA(ip, d);
121 greg 2.1
122 greg 2.4 if (ed <= 0)
123 greg 2.1 return(0);
124 greg 2.4 if (ed >= 0xffff)
125 greg 2.1 return(0xffff);
126 greg 2.4 return(ed);
127 greg 2.1 }
128    
129 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
130     int
131     interp2_analyze(INTERP2 *ip)
132 greg 2.1 {
133     SAMPORD *sortord;
134 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
135 greg 2.1 int bd;
136     /* sanity checks */
137 greg 2.4 if (ip == NULL || (ip->ns <= 1) | (ip->dmin <= 0))
138 greg 2.1 return(0);
139     /* need to allocate? */
140 greg 2.4 if (ip->da == NULL) {
141     ip->da = (unsigned short (*)[NI2DIR])malloc(
142 greg 2.1 sizeof(unsigned short)*NI2DIR*ip->ns);
143 greg 2.4 if (ip->da == NULL)
144 greg 2.1 return(0);
145     }
146     /* get temporary arrays */
147     sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
148     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
149     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
150 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
151     if ((sortord == NULL) | (rightrndx == NULL) |
152     (leftrndx == NULL) | (endrndx == NULL))
153 greg 2.1 return(0);
154     /* run through bidirections */
155     for (bd = 0; bd < NI2DIR/2; bd++) {
156     const double ang = 2.*PI/NI2DIR*bd;
157 greg 2.2 int *sptr;
158 greg 2.1 int i;
159     /* create right reverse index */
160 greg 2.2 if (bd) { /* re-use from previous iteration? */
161     sptr = rightrndx;
162 greg 2.1 rightrndx = leftrndx;
163     leftrndx = sptr;
164 greg 2.2 } else { /* else sort first half-plane */
165     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
166     for (i = ip->ns; i--; )
167 greg 2.1 rightrndx[sortord[i].si] = i;
168 greg 2.2 /* & store reverse order for later */
169     for (i = ip->ns; i--; )
170     endrndx[sortord[i].si] = ip->ns-1 - i;
171 greg 2.1 }
172     /* create new left reverse index */
173 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
174     sptr = leftrndx;
175     leftrndx = endrndx;
176     endrndx = sptr;
177     } else { /* else compute new half-plane */
178     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
179     for (i = ip->ns; i--; )
180     leftrndx[sortord[i].si] = i;
181 greg 2.1 }
182     /* sort grid values in this direction */
183 greg 2.2 sort_samples(sortord, ip, ang);
184 greg 2.1 /* find nearest neighbors each side */
185 greg 2.2 for (i = ip->ns; i--; ) {
186 greg 2.3 const int ii = sortord[i].si;
187 greg 2.1 int j;
188 greg 2.3 /* preload with large radii */
189 greg 2.4 ip->da[ii][bd] = ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
190     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
191 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
192 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
193     leftrndx[sortord[j].si] < leftrndx[ii]) {
194 greg 2.4 ip->da[ii][bd] = encode_diameter(ip,
195     sortord[j].dm - sortord[i].dm);
196 greg 2.1 break;
197     }
198     for (j = i; j-- > 0; ) /* nearest below */
199 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
200     leftrndx[sortord[j].si] > leftrndx[ii]) {
201 greg 2.4 ip->da[ii][bd+NI2DIR/2] = encode_diameter(ip,
202     sortord[i].dm - sortord[j].dm);
203 greg 2.1 break;
204     }
205     }
206     }
207     free(sortord); /* clean up */
208     free(rightrndx);
209     free(leftrndx);
210 greg 2.2 free(endrndx);
211 greg 2.1 return(1);
212     }
213    
214 greg 2.3 /* private call returns raw weight for a particular sample */
215 greg 2.1 static double
216 greg 2.3 get_wt(const INTERP2 *ip, const int i, double x, double y)
217 greg 2.1 {
218 greg 2.3 double dir, rd, d2;
219 greg 2.1 int ri;
220     /* get relative direction */
221     x -= ip->spt[i][0];
222     y -= ip->spt[i][1];
223     dir = atan2a(y, x);
224     dir += 2.*PI*(dir < 0);
225     /* linear radius interpolation */
226     rd = dir * (NI2DIR/2./PI);
227     ri = (int)rd;
228     rd -= (double)ri;
229 greg 2.4 rd = (1.-rd)*ip->da[i][ri] + rd*ip->da[i][(ri+1)%NI2DIR];
230     rd = ip->smf * DECODE_DIA(ip, rd);
231 greg 2.3 d2 = x*x + y*y;
232     /* Gaussian times harmonic weighting */
233 greg 2.4 return( exp(d2/(-2.*rd*rd)) * ip->dmin/(ip->dmin + sqrt(d2)) );
234 greg 2.1 }
235    
236     /* Assign full set of normalized weights to interpolate the given position */
237     int
238     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
239     {
240     double wnorm;
241     int i;
242    
243     if ((wtv == NULL) | (ip == NULL))
244     return(0);
245     /* need to compute interpolant? */
246 greg 2.4 if (ip->da == NULL && !interp2_analyze(ip))
247 greg 2.1 return(0);
248    
249     wnorm = 0; /* compute raw weights */
250     for (i = ip->ns; i--; ) {
251 greg 2.3 double wt = get_wt(ip, i, x, y);
252 greg 2.1 wtv[i] = wt;
253     wnorm += wt;
254     }
255     if (wnorm <= 0) /* too far from all our samples! */
256     return(0);
257     wnorm = 1./wnorm; /* normalize weights */
258     for (i = ip->ns; i--; )
259     wtv[i] *= wnorm;
260     return(ip->ns); /* all done */
261     }
262    
263    
264     /* Get normalized weights and indexes for n best samples in descending order */
265     int
266     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
267     {
268     int nn = 0;
269     double wnorm;
270     int i, j;
271    
272     if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL))
273     return(0);
274     /* need to compute interpolant? */
275 greg 2.4 if (ip->da == NULL && !interp2_analyze(ip))
276 greg 2.1 return(0);
277     /* identify top n weights */
278     for (i = ip->ns; i--; ) {
279 greg 2.3 const double wti = get_wt(ip, i, x, y);
280 greg 2.1 for (j = nn; j > 0; j--) {
281 greg 2.3 if (wt[j-1] >= wti)
282 greg 2.1 break;
283     if (j < n) {
284     wt[j] = wt[j-1];
285     si[j] = si[j-1];
286     }
287     }
288     if (j < n) { /* add/insert sample */
289 greg 2.3 wt[j] = wti;
290 greg 2.1 si[j] = i;
291     nn += (nn < n);
292     }
293     }
294 greg 2.3 wnorm = 0; /* normalize sample weights */
295     for (j = nn; j--; )
296     wnorm += wt[j];
297 greg 2.1 if (wnorm <= 0)
298     return(0);
299     wnorm = 1./wnorm;
300     for (j = nn; j--; )
301     wt[j] *= wnorm;
302     return(nn); /* return actual # samples */
303     }
304    
305     /* Free interpolant */
306     void
307     interp2_free(INTERP2 *ip)
308     {
309     if (ip == NULL)
310     return;
311 greg 2.4 if (ip->da != NULL)
312     free(ip->da);
313 greg 2.1 free(ip);
314     }