ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.17
Committed: Fri Mar 19 21:16:15 2021 UTC (3 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, HEAD
Changes since 2.16: +5 -3 lines
Log Message:
fix: free memory on failure

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.17 static const char RCSid[] = "$Id: interp2d.c,v 2.16 2021/03/11 01:58:59 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20 greg 2.7 * angular slice. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26 greg 2.13 * a fast approximation to the atan2(y,x) function and a low-res
27     * map indicating where sample weights are significant.
28 greg 2.4 ****************************************************************/
29 greg 2.1
30     #include <stdio.h>
31     #include <stdlib.h>
32     #include "rtmath.h"
33     #include "interp2d.h"
34    
35 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37 greg 2.1
38     /* Sample order (private) */
39     typedef struct {
40     int si; /* sample index */
41     float dm; /* distance measure in this direction */
42     } SAMPORD;
43    
44 greg 2.13 /* private routine to encode sample diameter with range checks */
45     static int
46     encode_diameter(const INTERP2 *ip, double d)
47     {
48     const int ed = ENCODE_DIA(ip, d);
49    
50     if (ed <= 0)
51     return(0);
52     if (ed >= 0xffff)
53     return(0xffff);
54     return(ed);
55     }
56    
57 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
58 greg 2.1 INTERP2 *
59     interp2_alloc(int nsamps)
60     {
61     INTERP2 *nip;
62    
63     if (nsamps <= 1)
64     return(NULL);
65    
66     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
67     if (nip == NULL)
68     return(NULL);
69    
70     nip->ns = nsamps;
71 greg 2.4 nip->dmin = 1; /* default minimum diameter */
72 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
73 greg 2.15 nip->c_data = NULL;
74 greg 2.4 nip->da = NULL;
75 greg 2.1 /* caller must assign spt[] array */
76     return(nip);
77     }
78    
79 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
80     INTERP2 *
81     interp2_realloc(INTERP2 *ip, int nsamps)
82     {
83 greg 2.16 INTERP2 *old_ip = ip;
84    
85 greg 2.2 if (ip == NULL)
86     return(interp2_alloc(nsamps));
87     if (nsamps <= 1) {
88     interp2_free(ip);
89     return(NULL);
90     }
91 greg 2.8 if (nsamps == ip->ns)
92 greg 2.2 return(ip);
93 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
94     free(ip->da);
95     ip->da = NULL;
96 greg 2.2 }
97     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
98 greg 2.16 if (ip == NULL) {
99 greg 2.17 if (nsamps <= ip->ns) {
100 greg 2.16 ip = old_ip;
101 greg 2.17 } else {
102     free(old_ip);
103 greg 2.16 return(NULL);
104 greg 2.17 }
105 greg 2.16 }
106 greg 2.2 ip->ns = nsamps;
107     return(ip);
108     }
109    
110 greg 2.5 /* Set minimum distance under which samples will start to merge */
111     void
112     interp2_spacing(INTERP2 *ip, double mind)
113     {
114     if (mind <= 0)
115     return;
116 greg 2.7 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
117 greg 2.5 return;
118     if (ip->da != NULL) { /* will need to recompute distribution */
119     free(ip->da);
120     ip->da = NULL;
121     }
122     ip->dmin = mind;
123     }
124    
125 greg 2.12 /* Compute unnormalized weight for a position relative to a sample */
126     double
127     interp2_wti(INTERP2 *ip, const int i, double x, double y)
128     {
129     double dir, rd, r2, d2;
130     int ri;
131     /* get relative direction */
132     x -= ip->spt[i][0];
133     y -= ip->spt[i][1];
134     dir = atan2a(y, x);
135     dir += 2.*PI*(dir < 0);
136     /* linear radius interpolation */
137     rd = dir * (NI2DIR/2./PI);
138     ri = (int)rd;
139     rd -= (double)ri;
140     rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
141     rd = ip->smf * DECODE_DIA(ip, rd);
142     r2 = 2.*rd*rd;
143     d2 = x*x + y*y;
144     if (d2 > 21.*r2) /* result would be < 1e-9 */
145     return(.0);
146     /* Gaussian times harmonic weighting */
147     return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
148     }
149    
150     /* private call to get grid flag index */
151     static int
152     interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
153     {
154     int inbounds = 0;
155    
156     if (ip == NULL) /* paranoia */
157     return(-1);
158     /* need to compute interpolant? */
159     if (ip->da == NULL && !interp2_analyze(ip))
160     return(-1);
161     /* get x & y grid positions */
162     fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
163    
164     if (fgi[0] >= NI2DIM)
165     fgi[0] = NI2DIM-1;
166     else if (fgi[0] < 0)
167     fgi[0] = 0;
168     else
169     ++inbounds;
170    
171     fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
172    
173     if (fgi[1] >= NI2DIM)
174     fgi[1] = NI2DIM-1;
175     else if (fgi[1] < 0)
176     fgi[1] = 0;
177     else
178     ++inbounds;
179    
180     return(inbounds == 2);
181     }
182    
183     #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
184    
185     #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
186    
187     /* private flood function to determine sample influence */
188     static void
189     influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
190     int xfi, int yfi)
191     {
192     double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
193     ip->smin[0];
194     double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
195     ip->smin[1];
196     double dx = gx - ip->spt[i][0];
197     double dy = gy - ip->spt[i][1];
198    
199     setflg(visited, xfi, yfi);
200    
201     if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
202     return;
203    
204     setflg(ip->da[i].infl, xfi, yfi);
205    
206     if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
207     influence_flood(ip, i, visited, xfi-1, yfi);
208    
209     if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
210     influence_flood(ip, i, visited, xfi, yfi-1);
211    
212     if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
213     influence_flood(ip, i, visited, xfi+1, yfi);
214    
215     if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
216     influence_flood(ip, i, visited, xfi, yfi+1);
217     }
218    
219 greg 2.13 /* private call to compute sample influence maps */
220     static void
221     map_influence(INTERP2 *ip)
222     {
223     unsigned short visited[NI2DIM];
224     int fgi[2];
225     int i, j;
226    
227     for (i = ip->ns; i--; ) {
228     for (j = NI2DIM; j--; ) {
229     ip->da[i].infl[j] = 0;
230     visited[j] = 0;
231     }
232     interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
233    
234     influence_flood(ip, i, visited, fgi[0], fgi[1]);
235     }
236     }
237    
238     /* Modify smoothing parameter by the given factor */
239     void
240     interp2_smooth(INTERP2 *ip, double sf)
241     {
242     float old_smf = ip->smf;
243    
244     if ((ip->smf *= sf) < NI2DSMF)
245     ip->smf = NI2DSMF;
246     /* need to recompute influence maps? */
247     if (ip->da != NULL && (old_smf*.85 > ip->smf) |
248     (ip->smf > old_smf*1.15))
249     map_influence(ip);
250     }
251    
252     /* private call-back to sort position index */
253     static int
254     cmp_spos(const void *p1, const void *p2)
255     {
256     const SAMPORD *so1 = (const SAMPORD *)p1;
257     const SAMPORD *so2 = (const SAMPORD *)p2;
258    
259     if (so1->dm > so2->dm)
260     return 1;
261     if (so1->dm < so2->dm)
262     return -1;
263     return 0;
264     }
265    
266     /* private routine to order samples in a particular direction */
267     static void
268     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
269     {
270     const double cosd = cos(ang);
271     const double sind = sin(ang);
272     int i;
273    
274     for (i = ip->ns; i--; ) {
275     sord[i].si = i;
276     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
277     }
278 greg 2.14 qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos);
279 greg 2.13 }
280    
281 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
282     int
283     interp2_analyze(INTERP2 *ip)
284 greg 2.1 {
285     SAMPORD *sortord;
286 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
287 greg 2.13 int i, bd;
288 greg 2.1 /* sanity checks */
289 greg 2.10 if (ip == NULL)
290     return(0);
291     if (ip->da != NULL) { /* free previous data if any */
292     free(ip->da);
293     ip->da = NULL;
294     }
295     if ((ip->ns <= 1) | (ip->dmin <= 0))
296 greg 2.1 return(0);
297 greg 2.10 /* compute sample domain */
298     ip->smin[0] = ip->smin[1] = FHUGE;
299 greg 2.11 ip->smax[0] = ip->smax[1] = -FHUGE;
300 greg 2.10 for (i = ip->ns; i--; ) {
301 greg 2.12 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
302     if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
303     if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
304     if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
305 greg 2.1 }
306 greg 2.11 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
307     (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
308     (1./NI2DIM/NI2DIM);
309 greg 2.10 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
310     return(0);
311     /* allocate analysis data */
312 greg 2.13 ip->da = (struct interp2_samp *)malloc(
313     sizeof(struct interp2_samp)*ip->ns );
314 greg 2.10 if (ip->da == NULL)
315     return(0);
316 greg 2.12 /* allocate temporary arrays */
317 greg 2.1 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
318     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
319     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
320 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
321     if ((sortord == NULL) | (rightrndx == NULL) |
322     (leftrndx == NULL) | (endrndx == NULL))
323 greg 2.1 return(0);
324     /* run through bidirections */
325     for (bd = 0; bd < NI2DIR/2; bd++) {
326     const double ang = 2.*PI/NI2DIR*bd;
327 greg 2.2 int *sptr;
328 greg 2.1 /* create right reverse index */
329 greg 2.2 if (bd) { /* re-use from previous iteration? */
330     sptr = rightrndx;
331 greg 2.1 rightrndx = leftrndx;
332     leftrndx = sptr;
333 greg 2.2 } else { /* else sort first half-plane */
334     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
335     for (i = ip->ns; i--; )
336 greg 2.1 rightrndx[sortord[i].si] = i;
337 greg 2.2 /* & store reverse order for later */
338     for (i = ip->ns; i--; )
339     endrndx[sortord[i].si] = ip->ns-1 - i;
340 greg 2.1 }
341     /* create new left reverse index */
342 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
343     sptr = leftrndx;
344     leftrndx = endrndx;
345     endrndx = sptr;
346     } else { /* else compute new half-plane */
347     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
348     for (i = ip->ns; i--; )
349     leftrndx[sortord[i].si] = i;
350 greg 2.1 }
351     /* sort grid values in this direction */
352 greg 2.2 sort_samples(sortord, ip, ang);
353 greg 2.1 /* find nearest neighbors each side */
354 greg 2.2 for (i = ip->ns; i--; ) {
355 greg 2.3 const int ii = sortord[i].si;
356 greg 2.13 int j;
357 greg 2.3 /* preload with large radii */
358 greg 2.10 ip->da[ii].dia[bd] =
359     ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
360     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
361 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
362 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
363     leftrndx[sortord[j].si] < leftrndx[ii]) {
364 greg 2.10 ip->da[ii].dia[bd] = encode_diameter(ip,
365 greg 2.4 sortord[j].dm - sortord[i].dm);
366 greg 2.1 break;
367     }
368     for (j = i; j-- > 0; ) /* nearest below */
369 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
370     leftrndx[sortord[j].si] > leftrndx[ii]) {
371 greg 2.10 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
372 greg 2.4 sortord[i].dm - sortord[j].dm);
373 greg 2.1 break;
374     }
375     }
376     }
377 greg 2.12 free(sortord); /* release temp arrays */
378 greg 2.1 free(rightrndx);
379     free(leftrndx);
380 greg 2.2 free(endrndx);
381 greg 2.13 /* map sample influence areas */
382     map_influence(ip);
383 greg 2.12 return(1); /* all done */
384 greg 2.11 }
385    
386 greg 2.1 /* Assign full set of normalized weights to interpolate the given position */
387     int
388     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
389     {
390     double wnorm;
391 greg 2.11 int fgi[2];
392 greg 2.1 int i;
393    
394 greg 2.11 if (wtv == NULL)
395     return(0);
396     /* get flag position */
397 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
398 greg 2.1 return(0);
399    
400     wnorm = 0; /* compute raw weights */
401 greg 2.11 for (i = ip->ns; i--; )
402 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
403 greg 2.10 double wt = interp2_wti(ip, i, x, y);
404 greg 2.1 wtv[i] = wt;
405     wnorm += wt;
406 greg 2.12 } else
407     wtv[i] = 0;
408 greg 2.1 if (wnorm <= 0) /* too far from all our samples! */
409     return(0);
410     wnorm = 1./wnorm; /* normalize weights */
411     for (i = ip->ns; i--; )
412     wtv[i] *= wnorm;
413     return(ip->ns); /* all done */
414     }
415    
416    
417     /* Get normalized weights and indexes for n best samples in descending order */
418     int
419     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
420     {
421     int nn = 0;
422 greg 2.11 int fgi[2];
423 greg 2.1 double wnorm;
424     int i, j;
425    
426 greg 2.11 if ((n <= 0) | (wt == NULL) | (si == NULL))
427     return(0);
428     /* get flag position */
429 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
430 greg 2.1 return(0);
431     /* identify top n weights */
432 greg 2.11 for (i = ip->ns; i--; )
433 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
434 greg 2.10 const double wti = interp2_wti(ip, i, x, y);
435 greg 2.1 for (j = nn; j > 0; j--) {
436 greg 2.3 if (wt[j-1] >= wti)
437 greg 2.1 break;
438     if (j < n) {
439     wt[j] = wt[j-1];
440     si[j] = si[j-1];
441     }
442     }
443     if (j < n) { /* add/insert sample */
444 greg 2.3 wt[j] = wti;
445 greg 2.1 si[j] = i;
446     nn += (nn < n);
447     }
448 greg 2.11 }
449 greg 2.3 wnorm = 0; /* normalize sample weights */
450     for (j = nn; j--; )
451     wnorm += wt[j];
452 greg 2.1 if (wnorm <= 0)
453     return(0);
454     wnorm = 1./wnorm;
455     for (j = nn; j--; )
456     wt[j] *= wnorm;
457     return(nn); /* return actual # samples */
458     }
459    
460     /* Free interpolant */
461     void
462     interp2_free(INTERP2 *ip)
463     {
464     if (ip == NULL)
465     return;
466 greg 2.4 if (ip->da != NULL)
467     free(ip->da);
468 greg 2.1 free(ip);
469     }