ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.16
Committed: Thu Mar 11 01:58:59 2021 UTC (3 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.15: +9 -3 lines
Log Message:
perf: made it so interp2_realloc() will never fail if reducing array size

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.16 static const char RCSid[] = "$Id: interp2d.c,v 2.15 2021/02/13 16:49:18 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20 greg 2.7 * angular slice. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26 greg 2.13 * a fast approximation to the atan2(y,x) function and a low-res
27     * map indicating where sample weights are significant.
28 greg 2.4 ****************************************************************/
29 greg 2.1
30     #include <stdio.h>
31     #include <stdlib.h>
32     #include "rtmath.h"
33     #include "interp2d.h"
34    
35 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37 greg 2.1
38     /* Sample order (private) */
39     typedef struct {
40     int si; /* sample index */
41     float dm; /* distance measure in this direction */
42     } SAMPORD;
43    
44 greg 2.13 /* private routine to encode sample diameter with range checks */
45     static int
46     encode_diameter(const INTERP2 *ip, double d)
47     {
48     const int ed = ENCODE_DIA(ip, d);
49    
50     if (ed <= 0)
51     return(0);
52     if (ed >= 0xffff)
53     return(0xffff);
54     return(ed);
55     }
56    
57 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
58 greg 2.1 INTERP2 *
59     interp2_alloc(int nsamps)
60     {
61     INTERP2 *nip;
62    
63     if (nsamps <= 1)
64     return(NULL);
65    
66     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
67     if (nip == NULL)
68     return(NULL);
69    
70     nip->ns = nsamps;
71 greg 2.4 nip->dmin = 1; /* default minimum diameter */
72 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
73 greg 2.15 nip->c_data = NULL;
74 greg 2.4 nip->da = NULL;
75 greg 2.1 /* caller must assign spt[] array */
76     return(nip);
77     }
78    
79 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
80     INTERP2 *
81     interp2_realloc(INTERP2 *ip, int nsamps)
82     {
83 greg 2.16 INTERP2 *old_ip = ip;
84    
85 greg 2.2 if (ip == NULL)
86     return(interp2_alloc(nsamps));
87     if (nsamps <= 1) {
88     interp2_free(ip);
89     return(NULL);
90     }
91 greg 2.8 if (nsamps == ip->ns)
92 greg 2.2 return(ip);
93 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
94     free(ip->da);
95     ip->da = NULL;
96 greg 2.2 }
97     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
98 greg 2.16 if (ip == NULL) {
99     if (nsamps <= ip->ns)
100     ip = old_ip;
101     else
102     return(NULL);
103     }
104 greg 2.2 ip->ns = nsamps;
105     return(ip);
106     }
107    
108 greg 2.5 /* Set minimum distance under which samples will start to merge */
109     void
110     interp2_spacing(INTERP2 *ip, double mind)
111     {
112     if (mind <= 0)
113     return;
114 greg 2.7 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
115 greg 2.5 return;
116     if (ip->da != NULL) { /* will need to recompute distribution */
117     free(ip->da);
118     ip->da = NULL;
119     }
120     ip->dmin = mind;
121     }
122    
123 greg 2.12 /* Compute unnormalized weight for a position relative to a sample */
124     double
125     interp2_wti(INTERP2 *ip, const int i, double x, double y)
126     {
127     double dir, rd, r2, d2;
128     int ri;
129     /* get relative direction */
130     x -= ip->spt[i][0];
131     y -= ip->spt[i][1];
132     dir = atan2a(y, x);
133     dir += 2.*PI*(dir < 0);
134     /* linear radius interpolation */
135     rd = dir * (NI2DIR/2./PI);
136     ri = (int)rd;
137     rd -= (double)ri;
138     rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
139     rd = ip->smf * DECODE_DIA(ip, rd);
140     r2 = 2.*rd*rd;
141     d2 = x*x + y*y;
142     if (d2 > 21.*r2) /* result would be < 1e-9 */
143     return(.0);
144     /* Gaussian times harmonic weighting */
145     return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
146     }
147    
148     /* private call to get grid flag index */
149     static int
150     interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
151     {
152     int inbounds = 0;
153    
154     if (ip == NULL) /* paranoia */
155     return(-1);
156     /* need to compute interpolant? */
157     if (ip->da == NULL && !interp2_analyze(ip))
158     return(-1);
159     /* get x & y grid positions */
160     fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
161    
162     if (fgi[0] >= NI2DIM)
163     fgi[0] = NI2DIM-1;
164     else if (fgi[0] < 0)
165     fgi[0] = 0;
166     else
167     ++inbounds;
168    
169     fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
170    
171     if (fgi[1] >= NI2DIM)
172     fgi[1] = NI2DIM-1;
173     else if (fgi[1] < 0)
174     fgi[1] = 0;
175     else
176     ++inbounds;
177    
178     return(inbounds == 2);
179     }
180    
181     #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
182    
183     #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
184    
185     /* private flood function to determine sample influence */
186     static void
187     influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
188     int xfi, int yfi)
189     {
190     double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
191     ip->smin[0];
192     double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
193     ip->smin[1];
194     double dx = gx - ip->spt[i][0];
195     double dy = gy - ip->spt[i][1];
196    
197     setflg(visited, xfi, yfi);
198    
199     if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
200     return;
201    
202     setflg(ip->da[i].infl, xfi, yfi);
203    
204     if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
205     influence_flood(ip, i, visited, xfi-1, yfi);
206    
207     if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
208     influence_flood(ip, i, visited, xfi, yfi-1);
209    
210     if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
211     influence_flood(ip, i, visited, xfi+1, yfi);
212    
213     if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
214     influence_flood(ip, i, visited, xfi, yfi+1);
215     }
216    
217 greg 2.13 /* private call to compute sample influence maps */
218     static void
219     map_influence(INTERP2 *ip)
220     {
221     unsigned short visited[NI2DIM];
222     int fgi[2];
223     int i, j;
224    
225     for (i = ip->ns; i--; ) {
226     for (j = NI2DIM; j--; ) {
227     ip->da[i].infl[j] = 0;
228     visited[j] = 0;
229     }
230     interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
231    
232     influence_flood(ip, i, visited, fgi[0], fgi[1]);
233     }
234     }
235    
236     /* Modify smoothing parameter by the given factor */
237     void
238     interp2_smooth(INTERP2 *ip, double sf)
239     {
240     float old_smf = ip->smf;
241    
242     if ((ip->smf *= sf) < NI2DSMF)
243     ip->smf = NI2DSMF;
244     /* need to recompute influence maps? */
245     if (ip->da != NULL && (old_smf*.85 > ip->smf) |
246     (ip->smf > old_smf*1.15))
247     map_influence(ip);
248     }
249    
250     /* private call-back to sort position index */
251     static int
252     cmp_spos(const void *p1, const void *p2)
253     {
254     const SAMPORD *so1 = (const SAMPORD *)p1;
255     const SAMPORD *so2 = (const SAMPORD *)p2;
256    
257     if (so1->dm > so2->dm)
258     return 1;
259     if (so1->dm < so2->dm)
260     return -1;
261     return 0;
262     }
263    
264     /* private routine to order samples in a particular direction */
265     static void
266     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
267     {
268     const double cosd = cos(ang);
269     const double sind = sin(ang);
270     int i;
271    
272     for (i = ip->ns; i--; ) {
273     sord[i].si = i;
274     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
275     }
276 greg 2.14 qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos);
277 greg 2.13 }
278    
279 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
280     int
281     interp2_analyze(INTERP2 *ip)
282 greg 2.1 {
283     SAMPORD *sortord;
284 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
285 greg 2.13 int i, bd;
286 greg 2.1 /* sanity checks */
287 greg 2.10 if (ip == NULL)
288     return(0);
289     if (ip->da != NULL) { /* free previous data if any */
290     free(ip->da);
291     ip->da = NULL;
292     }
293     if ((ip->ns <= 1) | (ip->dmin <= 0))
294 greg 2.1 return(0);
295 greg 2.10 /* compute sample domain */
296     ip->smin[0] = ip->smin[1] = FHUGE;
297 greg 2.11 ip->smax[0] = ip->smax[1] = -FHUGE;
298 greg 2.10 for (i = ip->ns; i--; ) {
299 greg 2.12 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
300     if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
301     if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
302     if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
303 greg 2.1 }
304 greg 2.11 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
305     (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
306     (1./NI2DIM/NI2DIM);
307 greg 2.10 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
308     return(0);
309     /* allocate analysis data */
310 greg 2.13 ip->da = (struct interp2_samp *)malloc(
311     sizeof(struct interp2_samp)*ip->ns );
312 greg 2.10 if (ip->da == NULL)
313     return(0);
314 greg 2.12 /* allocate temporary arrays */
315 greg 2.1 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
316     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
317     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
318 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
319     if ((sortord == NULL) | (rightrndx == NULL) |
320     (leftrndx == NULL) | (endrndx == NULL))
321 greg 2.1 return(0);
322     /* run through bidirections */
323     for (bd = 0; bd < NI2DIR/2; bd++) {
324     const double ang = 2.*PI/NI2DIR*bd;
325 greg 2.2 int *sptr;
326 greg 2.1 /* create right reverse index */
327 greg 2.2 if (bd) { /* re-use from previous iteration? */
328     sptr = rightrndx;
329 greg 2.1 rightrndx = leftrndx;
330     leftrndx = sptr;
331 greg 2.2 } else { /* else sort first half-plane */
332     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
333     for (i = ip->ns; i--; )
334 greg 2.1 rightrndx[sortord[i].si] = i;
335 greg 2.2 /* & store reverse order for later */
336     for (i = ip->ns; i--; )
337     endrndx[sortord[i].si] = ip->ns-1 - i;
338 greg 2.1 }
339     /* create new left reverse index */
340 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
341     sptr = leftrndx;
342     leftrndx = endrndx;
343     endrndx = sptr;
344     } else { /* else compute new half-plane */
345     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
346     for (i = ip->ns; i--; )
347     leftrndx[sortord[i].si] = i;
348 greg 2.1 }
349     /* sort grid values in this direction */
350 greg 2.2 sort_samples(sortord, ip, ang);
351 greg 2.1 /* find nearest neighbors each side */
352 greg 2.2 for (i = ip->ns; i--; ) {
353 greg 2.3 const int ii = sortord[i].si;
354 greg 2.13 int j;
355 greg 2.3 /* preload with large radii */
356 greg 2.10 ip->da[ii].dia[bd] =
357     ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
358     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
359 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
360 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
361     leftrndx[sortord[j].si] < leftrndx[ii]) {
362 greg 2.10 ip->da[ii].dia[bd] = encode_diameter(ip,
363 greg 2.4 sortord[j].dm - sortord[i].dm);
364 greg 2.1 break;
365     }
366     for (j = i; j-- > 0; ) /* nearest below */
367 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
368     leftrndx[sortord[j].si] > leftrndx[ii]) {
369 greg 2.10 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
370 greg 2.4 sortord[i].dm - sortord[j].dm);
371 greg 2.1 break;
372     }
373     }
374     }
375 greg 2.12 free(sortord); /* release temp arrays */
376 greg 2.1 free(rightrndx);
377     free(leftrndx);
378 greg 2.2 free(endrndx);
379 greg 2.13 /* map sample influence areas */
380     map_influence(ip);
381 greg 2.12 return(1); /* all done */
382 greg 2.11 }
383    
384 greg 2.1 /* Assign full set of normalized weights to interpolate the given position */
385     int
386     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
387     {
388     double wnorm;
389 greg 2.11 int fgi[2];
390 greg 2.1 int i;
391    
392 greg 2.11 if (wtv == NULL)
393     return(0);
394     /* get flag position */
395 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
396 greg 2.1 return(0);
397    
398     wnorm = 0; /* compute raw weights */
399 greg 2.11 for (i = ip->ns; i--; )
400 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
401 greg 2.10 double wt = interp2_wti(ip, i, x, y);
402 greg 2.1 wtv[i] = wt;
403     wnorm += wt;
404 greg 2.12 } else
405     wtv[i] = 0;
406 greg 2.1 if (wnorm <= 0) /* too far from all our samples! */
407     return(0);
408     wnorm = 1./wnorm; /* normalize weights */
409     for (i = ip->ns; i--; )
410     wtv[i] *= wnorm;
411     return(ip->ns); /* all done */
412     }
413    
414    
415     /* Get normalized weights and indexes for n best samples in descending order */
416     int
417     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
418     {
419     int nn = 0;
420 greg 2.11 int fgi[2];
421 greg 2.1 double wnorm;
422     int i, j;
423    
424 greg 2.11 if ((n <= 0) | (wt == NULL) | (si == NULL))
425     return(0);
426     /* get flag position */
427 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
428 greg 2.1 return(0);
429     /* identify top n weights */
430 greg 2.11 for (i = ip->ns; i--; )
431 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
432 greg 2.10 const double wti = interp2_wti(ip, i, x, y);
433 greg 2.1 for (j = nn; j > 0; j--) {
434 greg 2.3 if (wt[j-1] >= wti)
435 greg 2.1 break;
436     if (j < n) {
437     wt[j] = wt[j-1];
438     si[j] = si[j-1];
439     }
440     }
441     if (j < n) { /* add/insert sample */
442 greg 2.3 wt[j] = wti;
443 greg 2.1 si[j] = i;
444     nn += (nn < n);
445     }
446 greg 2.11 }
447 greg 2.3 wnorm = 0; /* normalize sample weights */
448     for (j = nn; j--; )
449     wnorm += wt[j];
450 greg 2.1 if (wnorm <= 0)
451     return(0);
452     wnorm = 1./wnorm;
453     for (j = nn; j--; )
454     wt[j] *= wnorm;
455     return(nn); /* return actual # samples */
456     }
457    
458     /* Free interpolant */
459     void
460     interp2_free(INTERP2 *ip)
461     {
462     if (ip == NULL)
463     return;
464 greg 2.4 if (ip->da != NULL)
465     free(ip->da);
466 greg 2.1 free(ip);
467     }