ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.15
Committed: Sat Feb 13 16:49:18 2021 UTC (4 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.14: +2 -1 lines
Log Message:
feat: added client data pointer for caller convenience

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.15 static const char RCSid[] = "$Id: interp2d.c,v 2.14 2014/06/06 00:56:42 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20 greg 2.7 * angular slice. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26 greg 2.13 * a fast approximation to the atan2(y,x) function and a low-res
27     * map indicating where sample weights are significant.
28 greg 2.4 ****************************************************************/
29 greg 2.1
30     #include <stdio.h>
31     #include <stdlib.h>
32     #include "rtmath.h"
33     #include "interp2d.h"
34    
35 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37 greg 2.1
38     /* Sample order (private) */
39     typedef struct {
40     int si; /* sample index */
41     float dm; /* distance measure in this direction */
42     } SAMPORD;
43    
44 greg 2.13 /* private routine to encode sample diameter with range checks */
45     static int
46     encode_diameter(const INTERP2 *ip, double d)
47     {
48     const int ed = ENCODE_DIA(ip, d);
49    
50     if (ed <= 0)
51     return(0);
52     if (ed >= 0xffff)
53     return(0xffff);
54     return(ed);
55     }
56    
57 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
58 greg 2.1 INTERP2 *
59     interp2_alloc(int nsamps)
60     {
61     INTERP2 *nip;
62    
63     if (nsamps <= 1)
64     return(NULL);
65    
66     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
67     if (nip == NULL)
68     return(NULL);
69    
70     nip->ns = nsamps;
71 greg 2.4 nip->dmin = 1; /* default minimum diameter */
72 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
73 greg 2.15 nip->c_data = NULL;
74 greg 2.4 nip->da = NULL;
75 greg 2.1 /* caller must assign spt[] array */
76     return(nip);
77     }
78    
79 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
80     INTERP2 *
81     interp2_realloc(INTERP2 *ip, int nsamps)
82     {
83     if (ip == NULL)
84     return(interp2_alloc(nsamps));
85     if (nsamps <= 1) {
86     interp2_free(ip);
87     return(NULL);
88     }
89 greg 2.8 if (nsamps == ip->ns)
90 greg 2.2 return(ip);
91 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
92     free(ip->da);
93     ip->da = NULL;
94 greg 2.2 }
95     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
96     if (ip == NULL)
97     return(NULL);
98     ip->ns = nsamps;
99     return(ip);
100     }
101    
102 greg 2.5 /* Set minimum distance under which samples will start to merge */
103     void
104     interp2_spacing(INTERP2 *ip, double mind)
105     {
106     if (mind <= 0)
107     return;
108 greg 2.7 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
109 greg 2.5 return;
110     if (ip->da != NULL) { /* will need to recompute distribution */
111     free(ip->da);
112     ip->da = NULL;
113     }
114     ip->dmin = mind;
115     }
116    
117 greg 2.12 /* Compute unnormalized weight for a position relative to a sample */
118     double
119     interp2_wti(INTERP2 *ip, const int i, double x, double y)
120     {
121     double dir, rd, r2, d2;
122     int ri;
123     /* get relative direction */
124     x -= ip->spt[i][0];
125     y -= ip->spt[i][1];
126     dir = atan2a(y, x);
127     dir += 2.*PI*(dir < 0);
128     /* linear radius interpolation */
129     rd = dir * (NI2DIR/2./PI);
130     ri = (int)rd;
131     rd -= (double)ri;
132     rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
133     rd = ip->smf * DECODE_DIA(ip, rd);
134     r2 = 2.*rd*rd;
135     d2 = x*x + y*y;
136     if (d2 > 21.*r2) /* result would be < 1e-9 */
137     return(.0);
138     /* Gaussian times harmonic weighting */
139     return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
140     }
141    
142     /* private call to get grid flag index */
143     static int
144     interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
145     {
146     int inbounds = 0;
147    
148     if (ip == NULL) /* paranoia */
149     return(-1);
150     /* need to compute interpolant? */
151     if (ip->da == NULL && !interp2_analyze(ip))
152     return(-1);
153     /* get x & y grid positions */
154     fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
155    
156     if (fgi[0] >= NI2DIM)
157     fgi[0] = NI2DIM-1;
158     else if (fgi[0] < 0)
159     fgi[0] = 0;
160     else
161     ++inbounds;
162    
163     fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
164    
165     if (fgi[1] >= NI2DIM)
166     fgi[1] = NI2DIM-1;
167     else if (fgi[1] < 0)
168     fgi[1] = 0;
169     else
170     ++inbounds;
171    
172     return(inbounds == 2);
173     }
174    
175     #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
176    
177     #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
178    
179     /* private flood function to determine sample influence */
180     static void
181     influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
182     int xfi, int yfi)
183     {
184     double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
185     ip->smin[0];
186     double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
187     ip->smin[1];
188     double dx = gx - ip->spt[i][0];
189     double dy = gy - ip->spt[i][1];
190    
191     setflg(visited, xfi, yfi);
192    
193     if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
194     return;
195    
196     setflg(ip->da[i].infl, xfi, yfi);
197    
198     if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
199     influence_flood(ip, i, visited, xfi-1, yfi);
200    
201     if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
202     influence_flood(ip, i, visited, xfi, yfi-1);
203    
204     if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
205     influence_flood(ip, i, visited, xfi+1, yfi);
206    
207     if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
208     influence_flood(ip, i, visited, xfi, yfi+1);
209     }
210    
211 greg 2.13 /* private call to compute sample influence maps */
212     static void
213     map_influence(INTERP2 *ip)
214     {
215     unsigned short visited[NI2DIM];
216     int fgi[2];
217     int i, j;
218    
219     for (i = ip->ns; i--; ) {
220     for (j = NI2DIM; j--; ) {
221     ip->da[i].infl[j] = 0;
222     visited[j] = 0;
223     }
224     interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
225    
226     influence_flood(ip, i, visited, fgi[0], fgi[1]);
227     }
228     }
229    
230     /* Modify smoothing parameter by the given factor */
231     void
232     interp2_smooth(INTERP2 *ip, double sf)
233     {
234     float old_smf = ip->smf;
235    
236     if ((ip->smf *= sf) < NI2DSMF)
237     ip->smf = NI2DSMF;
238     /* need to recompute influence maps? */
239     if (ip->da != NULL && (old_smf*.85 > ip->smf) |
240     (ip->smf > old_smf*1.15))
241     map_influence(ip);
242     }
243    
244     /* private call-back to sort position index */
245     static int
246     cmp_spos(const void *p1, const void *p2)
247     {
248     const SAMPORD *so1 = (const SAMPORD *)p1;
249     const SAMPORD *so2 = (const SAMPORD *)p2;
250    
251     if (so1->dm > so2->dm)
252     return 1;
253     if (so1->dm < so2->dm)
254     return -1;
255     return 0;
256     }
257    
258     /* private routine to order samples in a particular direction */
259     static void
260     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
261     {
262     const double cosd = cos(ang);
263     const double sind = sin(ang);
264     int i;
265    
266     for (i = ip->ns; i--; ) {
267     sord[i].si = i;
268     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
269     }
270 greg 2.14 qsort(sord, ip->ns, sizeof(SAMPORD), cmp_spos);
271 greg 2.13 }
272    
273 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
274     int
275     interp2_analyze(INTERP2 *ip)
276 greg 2.1 {
277     SAMPORD *sortord;
278 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
279 greg 2.13 int i, bd;
280 greg 2.1 /* sanity checks */
281 greg 2.10 if (ip == NULL)
282     return(0);
283     if (ip->da != NULL) { /* free previous data if any */
284     free(ip->da);
285     ip->da = NULL;
286     }
287     if ((ip->ns <= 1) | (ip->dmin <= 0))
288 greg 2.1 return(0);
289 greg 2.10 /* compute sample domain */
290     ip->smin[0] = ip->smin[1] = FHUGE;
291 greg 2.11 ip->smax[0] = ip->smax[1] = -FHUGE;
292 greg 2.10 for (i = ip->ns; i--; ) {
293 greg 2.12 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
294     if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
295     if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
296     if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
297 greg 2.1 }
298 greg 2.11 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
299     (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
300     (1./NI2DIM/NI2DIM);
301 greg 2.10 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
302     return(0);
303     /* allocate analysis data */
304 greg 2.13 ip->da = (struct interp2_samp *)malloc(
305     sizeof(struct interp2_samp)*ip->ns );
306 greg 2.10 if (ip->da == NULL)
307     return(0);
308 greg 2.12 /* allocate temporary arrays */
309 greg 2.1 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
310     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
311     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
312 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
313     if ((sortord == NULL) | (rightrndx == NULL) |
314     (leftrndx == NULL) | (endrndx == NULL))
315 greg 2.1 return(0);
316     /* run through bidirections */
317     for (bd = 0; bd < NI2DIR/2; bd++) {
318     const double ang = 2.*PI/NI2DIR*bd;
319 greg 2.2 int *sptr;
320 greg 2.1 /* create right reverse index */
321 greg 2.2 if (bd) { /* re-use from previous iteration? */
322     sptr = rightrndx;
323 greg 2.1 rightrndx = leftrndx;
324     leftrndx = sptr;
325 greg 2.2 } else { /* else sort first half-plane */
326     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
327     for (i = ip->ns; i--; )
328 greg 2.1 rightrndx[sortord[i].si] = i;
329 greg 2.2 /* & store reverse order for later */
330     for (i = ip->ns; i--; )
331     endrndx[sortord[i].si] = ip->ns-1 - i;
332 greg 2.1 }
333     /* create new left reverse index */
334 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
335     sptr = leftrndx;
336     leftrndx = endrndx;
337     endrndx = sptr;
338     } else { /* else compute new half-plane */
339     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
340     for (i = ip->ns; i--; )
341     leftrndx[sortord[i].si] = i;
342 greg 2.1 }
343     /* sort grid values in this direction */
344 greg 2.2 sort_samples(sortord, ip, ang);
345 greg 2.1 /* find nearest neighbors each side */
346 greg 2.2 for (i = ip->ns; i--; ) {
347 greg 2.3 const int ii = sortord[i].si;
348 greg 2.13 int j;
349 greg 2.3 /* preload with large radii */
350 greg 2.10 ip->da[ii].dia[bd] =
351     ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
352     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
353 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
354 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
355     leftrndx[sortord[j].si] < leftrndx[ii]) {
356 greg 2.10 ip->da[ii].dia[bd] = encode_diameter(ip,
357 greg 2.4 sortord[j].dm - sortord[i].dm);
358 greg 2.1 break;
359     }
360     for (j = i; j-- > 0; ) /* nearest below */
361 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
362     leftrndx[sortord[j].si] > leftrndx[ii]) {
363 greg 2.10 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
364 greg 2.4 sortord[i].dm - sortord[j].dm);
365 greg 2.1 break;
366     }
367     }
368     }
369 greg 2.12 free(sortord); /* release temp arrays */
370 greg 2.1 free(rightrndx);
371     free(leftrndx);
372 greg 2.2 free(endrndx);
373 greg 2.13 /* map sample influence areas */
374     map_influence(ip);
375 greg 2.12 return(1); /* all done */
376 greg 2.11 }
377    
378 greg 2.1 /* Assign full set of normalized weights to interpolate the given position */
379     int
380     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
381     {
382     double wnorm;
383 greg 2.11 int fgi[2];
384 greg 2.1 int i;
385    
386 greg 2.11 if (wtv == NULL)
387     return(0);
388     /* get flag position */
389 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
390 greg 2.1 return(0);
391    
392     wnorm = 0; /* compute raw weights */
393 greg 2.11 for (i = ip->ns; i--; )
394 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
395 greg 2.10 double wt = interp2_wti(ip, i, x, y);
396 greg 2.1 wtv[i] = wt;
397     wnorm += wt;
398 greg 2.12 } else
399     wtv[i] = 0;
400 greg 2.1 if (wnorm <= 0) /* too far from all our samples! */
401     return(0);
402     wnorm = 1./wnorm; /* normalize weights */
403     for (i = ip->ns; i--; )
404     wtv[i] *= wnorm;
405     return(ip->ns); /* all done */
406     }
407    
408    
409     /* Get normalized weights and indexes for n best samples in descending order */
410     int
411     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
412     {
413     int nn = 0;
414 greg 2.11 int fgi[2];
415 greg 2.1 double wnorm;
416     int i, j;
417    
418 greg 2.11 if ((n <= 0) | (wt == NULL) | (si == NULL))
419     return(0);
420     /* get flag position */
421 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
422 greg 2.1 return(0);
423     /* identify top n weights */
424 greg 2.11 for (i = ip->ns; i--; )
425 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
426 greg 2.10 const double wti = interp2_wti(ip, i, x, y);
427 greg 2.1 for (j = nn; j > 0; j--) {
428 greg 2.3 if (wt[j-1] >= wti)
429 greg 2.1 break;
430     if (j < n) {
431     wt[j] = wt[j-1];
432     si[j] = si[j-1];
433     }
434     }
435     if (j < n) { /* add/insert sample */
436 greg 2.3 wt[j] = wti;
437 greg 2.1 si[j] = i;
438     nn += (nn < n);
439     }
440 greg 2.11 }
441 greg 2.3 wnorm = 0; /* normalize sample weights */
442     for (j = nn; j--; )
443     wnorm += wt[j];
444 greg 2.1 if (wnorm <= 0)
445     return(0);
446     wnorm = 1./wnorm;
447     for (j = nn; j--; )
448     wt[j] *= wnorm;
449     return(nn); /* return actual # samples */
450     }
451    
452     /* Free interpolant */
453     void
454     interp2_free(INTERP2 *ip)
455     {
456     if (ip == NULL)
457     return;
458 greg 2.4 if (ip->da != NULL)
459     free(ip->da);
460 greg 2.1 free(ip);
461     }