| 1 |
greg |
2.1 |
#ifndef lint
|
| 2 |
greg |
2.13 |
static const char RCSid[] = "$Id: interp2d.c,v 2.12 2013/02/15 19:15:16 greg Exp $";
|
| 3 |
greg |
2.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* General interpolation method for unstructured values on 2-D plane.
|
| 6 |
|
|
*
|
| 7 |
|
|
* G.Ward Feb 2013
|
| 8 |
|
|
*/
|
| 9 |
|
|
|
| 10 |
|
|
#include "copyright.h"
|
| 11 |
|
|
|
| 12 |
greg |
2.4 |
/***************************************************************
|
| 13 |
greg |
2.1 |
* This is a general method for 2-D interpolation similar to
|
| 14 |
|
|
* radial basis functions but allowing for a good deal of local
|
| 15 |
|
|
* anisotropy in the point distribution. Each sample point
|
| 16 |
|
|
* is examined to determine the closest neighboring samples in
|
| 17 |
|
|
* each of NI2DIR surrounding directions. To speed this
|
| 18 |
greg |
2.4 |
* calculation, we sort the data into half-planes and apply
|
| 19 |
|
|
* simple tests to see which neighbor is closest in each
|
| 20 |
greg |
2.7 |
* angular slice. Once we have our approximate neighborhood
|
| 21 |
greg |
2.3 |
* for a sample, we can use it in a modified Gaussian weighting
|
| 22 |
greg |
2.4 |
* with allowing local anisotropy. Harmonic weighting is added
|
| 23 |
greg |
2.3 |
* to reduce the influence of distant neighbors. This yields a
|
| 24 |
|
|
* smooth interpolation regardless of how the sample points are
|
| 25 |
greg |
2.4 |
* initially distributed. Evaluation is accelerated by use of
|
| 26 |
greg |
2.13 |
* a fast approximation to the atan2(y,x) function and a low-res
|
| 27 |
|
|
* map indicating where sample weights are significant.
|
| 28 |
greg |
2.4 |
****************************************************************/
|
| 29 |
greg |
2.1 |
|
| 30 |
|
|
#include <stdio.h>
|
| 31 |
|
|
#include <stdlib.h>
|
| 32 |
|
|
#include "rtmath.h"
|
| 33 |
|
|
#include "interp2d.h"
|
| 34 |
|
|
|
| 35 |
greg |
2.4 |
#define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
|
| 36 |
|
|
#define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
|
| 37 |
greg |
2.1 |
|
| 38 |
|
|
/* Sample order (private) */
|
| 39 |
|
|
typedef struct {
|
| 40 |
|
|
int si; /* sample index */
|
| 41 |
|
|
float dm; /* distance measure in this direction */
|
| 42 |
|
|
} SAMPORD;
|
| 43 |
|
|
|
| 44 |
greg |
2.13 |
/* private routine to encode sample diameter with range checks */
|
| 45 |
|
|
static int
|
| 46 |
|
|
encode_diameter(const INTERP2 *ip, double d)
|
| 47 |
|
|
{
|
| 48 |
|
|
const int ed = ENCODE_DIA(ip, d);
|
| 49 |
|
|
|
| 50 |
|
|
if (ed <= 0)
|
| 51 |
|
|
return(0);
|
| 52 |
|
|
if (ed >= 0xffff)
|
| 53 |
|
|
return(0xffff);
|
| 54 |
|
|
return(ed);
|
| 55 |
|
|
}
|
| 56 |
|
|
|
| 57 |
greg |
2.2 |
/* Allocate a new set of interpolation samples (caller assigns spt[] array) */
|
| 58 |
greg |
2.1 |
INTERP2 *
|
| 59 |
|
|
interp2_alloc(int nsamps)
|
| 60 |
|
|
{
|
| 61 |
|
|
INTERP2 *nip;
|
| 62 |
|
|
|
| 63 |
|
|
if (nsamps <= 1)
|
| 64 |
|
|
return(NULL);
|
| 65 |
|
|
|
| 66 |
|
|
nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
|
| 67 |
|
|
if (nip == NULL)
|
| 68 |
|
|
return(NULL);
|
| 69 |
|
|
|
| 70 |
|
|
nip->ns = nsamps;
|
| 71 |
greg |
2.4 |
nip->dmin = 1; /* default minimum diameter */
|
| 72 |
greg |
2.1 |
nip->smf = NI2DSMF; /* default smoothing factor */
|
| 73 |
greg |
2.4 |
nip->da = NULL;
|
| 74 |
greg |
2.1 |
/* caller must assign spt[] array */
|
| 75 |
|
|
return(nip);
|
| 76 |
|
|
}
|
| 77 |
|
|
|
| 78 |
greg |
2.2 |
/* Resize interpolation array (caller must assign any new values) */
|
| 79 |
|
|
INTERP2 *
|
| 80 |
|
|
interp2_realloc(INTERP2 *ip, int nsamps)
|
| 81 |
|
|
{
|
| 82 |
|
|
if (ip == NULL)
|
| 83 |
|
|
return(interp2_alloc(nsamps));
|
| 84 |
|
|
if (nsamps <= 1) {
|
| 85 |
|
|
interp2_free(ip);
|
| 86 |
|
|
return(NULL);
|
| 87 |
|
|
}
|
| 88 |
greg |
2.8 |
if (nsamps == ip->ns)
|
| 89 |
greg |
2.2 |
return(ip);
|
| 90 |
greg |
2.4 |
if (ip->da != NULL) { /* will need to recompute distribution */
|
| 91 |
|
|
free(ip->da);
|
| 92 |
|
|
ip->da = NULL;
|
| 93 |
greg |
2.2 |
}
|
| 94 |
|
|
ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
|
| 95 |
|
|
if (ip == NULL)
|
| 96 |
|
|
return(NULL);
|
| 97 |
|
|
ip->ns = nsamps;
|
| 98 |
|
|
return(ip);
|
| 99 |
|
|
}
|
| 100 |
|
|
|
| 101 |
greg |
2.5 |
/* Set minimum distance under which samples will start to merge */
|
| 102 |
|
|
void
|
| 103 |
|
|
interp2_spacing(INTERP2 *ip, double mind)
|
| 104 |
|
|
{
|
| 105 |
|
|
if (mind <= 0)
|
| 106 |
|
|
return;
|
| 107 |
greg |
2.7 |
if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
|
| 108 |
greg |
2.5 |
return;
|
| 109 |
|
|
if (ip->da != NULL) { /* will need to recompute distribution */
|
| 110 |
|
|
free(ip->da);
|
| 111 |
|
|
ip->da = NULL;
|
| 112 |
|
|
}
|
| 113 |
|
|
ip->dmin = mind;
|
| 114 |
|
|
}
|
| 115 |
|
|
|
| 116 |
greg |
2.12 |
/* Compute unnormalized weight for a position relative to a sample */
|
| 117 |
|
|
double
|
| 118 |
|
|
interp2_wti(INTERP2 *ip, const int i, double x, double y)
|
| 119 |
|
|
{
|
| 120 |
|
|
double dir, rd, r2, d2;
|
| 121 |
|
|
int ri;
|
| 122 |
|
|
/* get relative direction */
|
| 123 |
|
|
x -= ip->spt[i][0];
|
| 124 |
|
|
y -= ip->spt[i][1];
|
| 125 |
|
|
dir = atan2a(y, x);
|
| 126 |
|
|
dir += 2.*PI*(dir < 0);
|
| 127 |
|
|
/* linear radius interpolation */
|
| 128 |
|
|
rd = dir * (NI2DIR/2./PI);
|
| 129 |
|
|
ri = (int)rd;
|
| 130 |
|
|
rd -= (double)ri;
|
| 131 |
|
|
rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
|
| 132 |
|
|
rd = ip->smf * DECODE_DIA(ip, rd);
|
| 133 |
|
|
r2 = 2.*rd*rd;
|
| 134 |
|
|
d2 = x*x + y*y;
|
| 135 |
|
|
if (d2 > 21.*r2) /* result would be < 1e-9 */
|
| 136 |
|
|
return(.0);
|
| 137 |
|
|
/* Gaussian times harmonic weighting */
|
| 138 |
|
|
return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
|
| 139 |
|
|
}
|
| 140 |
|
|
|
| 141 |
|
|
/* private call to get grid flag index */
|
| 142 |
|
|
static int
|
| 143 |
|
|
interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
|
| 144 |
|
|
{
|
| 145 |
|
|
int inbounds = 0;
|
| 146 |
|
|
|
| 147 |
|
|
if (ip == NULL) /* paranoia */
|
| 148 |
|
|
return(-1);
|
| 149 |
|
|
/* need to compute interpolant? */
|
| 150 |
|
|
if (ip->da == NULL && !interp2_analyze(ip))
|
| 151 |
|
|
return(-1);
|
| 152 |
|
|
/* get x & y grid positions */
|
| 153 |
|
|
fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
|
| 154 |
|
|
|
| 155 |
|
|
if (fgi[0] >= NI2DIM)
|
| 156 |
|
|
fgi[0] = NI2DIM-1;
|
| 157 |
|
|
else if (fgi[0] < 0)
|
| 158 |
|
|
fgi[0] = 0;
|
| 159 |
|
|
else
|
| 160 |
|
|
++inbounds;
|
| 161 |
|
|
|
| 162 |
|
|
fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
|
| 163 |
|
|
|
| 164 |
|
|
if (fgi[1] >= NI2DIM)
|
| 165 |
|
|
fgi[1] = NI2DIM-1;
|
| 166 |
|
|
else if (fgi[1] < 0)
|
| 167 |
|
|
fgi[1] = 0;
|
| 168 |
|
|
else
|
| 169 |
|
|
++inbounds;
|
| 170 |
|
|
|
| 171 |
|
|
return(inbounds == 2);
|
| 172 |
|
|
}
|
| 173 |
|
|
|
| 174 |
|
|
#define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
|
| 175 |
|
|
|
| 176 |
|
|
#define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
|
| 177 |
|
|
|
| 178 |
|
|
/* private flood function to determine sample influence */
|
| 179 |
|
|
static void
|
| 180 |
|
|
influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
|
| 181 |
|
|
int xfi, int yfi)
|
| 182 |
|
|
{
|
| 183 |
|
|
double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
|
| 184 |
|
|
ip->smin[0];
|
| 185 |
|
|
double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
|
| 186 |
|
|
ip->smin[1];
|
| 187 |
|
|
double dx = gx - ip->spt[i][0];
|
| 188 |
|
|
double dy = gy - ip->spt[i][1];
|
| 189 |
|
|
|
| 190 |
|
|
setflg(visited, xfi, yfi);
|
| 191 |
|
|
|
| 192 |
|
|
if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
|
| 193 |
|
|
return;
|
| 194 |
|
|
|
| 195 |
|
|
setflg(ip->da[i].infl, xfi, yfi);
|
| 196 |
|
|
|
| 197 |
|
|
if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
|
| 198 |
|
|
influence_flood(ip, i, visited, xfi-1, yfi);
|
| 199 |
|
|
|
| 200 |
|
|
if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
|
| 201 |
|
|
influence_flood(ip, i, visited, xfi, yfi-1);
|
| 202 |
|
|
|
| 203 |
|
|
if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
|
| 204 |
|
|
influence_flood(ip, i, visited, xfi+1, yfi);
|
| 205 |
|
|
|
| 206 |
|
|
if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
|
| 207 |
|
|
influence_flood(ip, i, visited, xfi, yfi+1);
|
| 208 |
|
|
}
|
| 209 |
|
|
|
| 210 |
greg |
2.13 |
/* private call to compute sample influence maps */
|
| 211 |
|
|
static void
|
| 212 |
|
|
map_influence(INTERP2 *ip)
|
| 213 |
|
|
{
|
| 214 |
|
|
unsigned short visited[NI2DIM];
|
| 215 |
|
|
int fgi[2];
|
| 216 |
|
|
int i, j;
|
| 217 |
|
|
|
| 218 |
|
|
for (i = ip->ns; i--; ) {
|
| 219 |
|
|
for (j = NI2DIM; j--; ) {
|
| 220 |
|
|
ip->da[i].infl[j] = 0;
|
| 221 |
|
|
visited[j] = 0;
|
| 222 |
|
|
}
|
| 223 |
|
|
interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
|
| 224 |
|
|
|
| 225 |
|
|
influence_flood(ip, i, visited, fgi[0], fgi[1]);
|
| 226 |
|
|
}
|
| 227 |
|
|
}
|
| 228 |
|
|
|
| 229 |
|
|
/* Modify smoothing parameter by the given factor */
|
| 230 |
|
|
void
|
| 231 |
|
|
interp2_smooth(INTERP2 *ip, double sf)
|
| 232 |
|
|
{
|
| 233 |
|
|
float old_smf = ip->smf;
|
| 234 |
|
|
|
| 235 |
|
|
if ((ip->smf *= sf) < NI2DSMF)
|
| 236 |
|
|
ip->smf = NI2DSMF;
|
| 237 |
|
|
/* need to recompute influence maps? */
|
| 238 |
|
|
if (ip->da != NULL && (old_smf*.85 > ip->smf) |
|
| 239 |
|
|
(ip->smf > old_smf*1.15))
|
| 240 |
|
|
map_influence(ip);
|
| 241 |
|
|
}
|
| 242 |
|
|
|
| 243 |
|
|
/* private call-back to sort position index */
|
| 244 |
|
|
static int
|
| 245 |
|
|
cmp_spos(const void *p1, const void *p2)
|
| 246 |
|
|
{
|
| 247 |
|
|
const SAMPORD *so1 = (const SAMPORD *)p1;
|
| 248 |
|
|
const SAMPORD *so2 = (const SAMPORD *)p2;
|
| 249 |
|
|
|
| 250 |
|
|
if (so1->dm > so2->dm)
|
| 251 |
|
|
return 1;
|
| 252 |
|
|
if (so1->dm < so2->dm)
|
| 253 |
|
|
return -1;
|
| 254 |
|
|
return 0;
|
| 255 |
|
|
}
|
| 256 |
|
|
|
| 257 |
|
|
/* private routine to order samples in a particular direction */
|
| 258 |
|
|
static void
|
| 259 |
|
|
sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
|
| 260 |
|
|
{
|
| 261 |
|
|
const double cosd = cos(ang);
|
| 262 |
|
|
const double sind = sin(ang);
|
| 263 |
|
|
int i;
|
| 264 |
|
|
|
| 265 |
|
|
for (i = ip->ns; i--; ) {
|
| 266 |
|
|
sord[i].si = i;
|
| 267 |
|
|
sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
|
| 268 |
|
|
}
|
| 269 |
|
|
qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
|
| 270 |
|
|
}
|
| 271 |
|
|
|
| 272 |
greg |
2.2 |
/* (Re)compute anisotropic basis function interpolant (normally automatic) */
|
| 273 |
|
|
int
|
| 274 |
|
|
interp2_analyze(INTERP2 *ip)
|
| 275 |
greg |
2.1 |
{
|
| 276 |
|
|
SAMPORD *sortord;
|
| 277 |
greg |
2.2 |
int *rightrndx, *leftrndx, *endrndx;
|
| 278 |
greg |
2.13 |
int i, bd;
|
| 279 |
greg |
2.1 |
/* sanity checks */
|
| 280 |
greg |
2.10 |
if (ip == NULL)
|
| 281 |
|
|
return(0);
|
| 282 |
|
|
if (ip->da != NULL) { /* free previous data if any */
|
| 283 |
|
|
free(ip->da);
|
| 284 |
|
|
ip->da = NULL;
|
| 285 |
|
|
}
|
| 286 |
|
|
if ((ip->ns <= 1) | (ip->dmin <= 0))
|
| 287 |
greg |
2.1 |
return(0);
|
| 288 |
greg |
2.10 |
/* compute sample domain */
|
| 289 |
|
|
ip->smin[0] = ip->smin[1] = FHUGE;
|
| 290 |
greg |
2.11 |
ip->smax[0] = ip->smax[1] = -FHUGE;
|
| 291 |
greg |
2.10 |
for (i = ip->ns; i--; ) {
|
| 292 |
greg |
2.12 |
if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
|
| 293 |
|
|
if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
|
| 294 |
|
|
if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
|
| 295 |
|
|
if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
|
| 296 |
greg |
2.1 |
}
|
| 297 |
greg |
2.11 |
ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
|
| 298 |
|
|
(ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
|
| 299 |
|
|
(1./NI2DIM/NI2DIM);
|
| 300 |
greg |
2.10 |
if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
|
| 301 |
|
|
return(0);
|
| 302 |
|
|
/* allocate analysis data */
|
| 303 |
greg |
2.13 |
ip->da = (struct interp2_samp *)malloc(
|
| 304 |
|
|
sizeof(struct interp2_samp)*ip->ns );
|
| 305 |
greg |
2.10 |
if (ip->da == NULL)
|
| 306 |
|
|
return(0);
|
| 307 |
greg |
2.12 |
/* allocate temporary arrays */
|
| 308 |
greg |
2.1 |
sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
|
| 309 |
|
|
rightrndx = (int *)malloc(sizeof(int)*ip->ns);
|
| 310 |
|
|
leftrndx = (int *)malloc(sizeof(int)*ip->ns);
|
| 311 |
greg |
2.2 |
endrndx = (int *)malloc(sizeof(int)*ip->ns);
|
| 312 |
|
|
if ((sortord == NULL) | (rightrndx == NULL) |
|
| 313 |
|
|
(leftrndx == NULL) | (endrndx == NULL))
|
| 314 |
greg |
2.1 |
return(0);
|
| 315 |
|
|
/* run through bidirections */
|
| 316 |
|
|
for (bd = 0; bd < NI2DIR/2; bd++) {
|
| 317 |
|
|
const double ang = 2.*PI/NI2DIR*bd;
|
| 318 |
greg |
2.2 |
int *sptr;
|
| 319 |
greg |
2.1 |
/* create right reverse index */
|
| 320 |
greg |
2.2 |
if (bd) { /* re-use from previous iteration? */
|
| 321 |
|
|
sptr = rightrndx;
|
| 322 |
greg |
2.1 |
rightrndx = leftrndx;
|
| 323 |
|
|
leftrndx = sptr;
|
| 324 |
greg |
2.2 |
} else { /* else sort first half-plane */
|
| 325 |
|
|
sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
|
| 326 |
|
|
for (i = ip->ns; i--; )
|
| 327 |
greg |
2.1 |
rightrndx[sortord[i].si] = i;
|
| 328 |
greg |
2.2 |
/* & store reverse order for later */
|
| 329 |
|
|
for (i = ip->ns; i--; )
|
| 330 |
|
|
endrndx[sortord[i].si] = ip->ns-1 - i;
|
| 331 |
greg |
2.1 |
}
|
| 332 |
|
|
/* create new left reverse index */
|
| 333 |
greg |
2.2 |
if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
|
| 334 |
|
|
sptr = leftrndx;
|
| 335 |
|
|
leftrndx = endrndx;
|
| 336 |
|
|
endrndx = sptr;
|
| 337 |
|
|
} else { /* else compute new half-plane */
|
| 338 |
|
|
sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
|
| 339 |
|
|
for (i = ip->ns; i--; )
|
| 340 |
|
|
leftrndx[sortord[i].si] = i;
|
| 341 |
greg |
2.1 |
}
|
| 342 |
|
|
/* sort grid values in this direction */
|
| 343 |
greg |
2.2 |
sort_samples(sortord, ip, ang);
|
| 344 |
greg |
2.1 |
/* find nearest neighbors each side */
|
| 345 |
greg |
2.2 |
for (i = ip->ns; i--; ) {
|
| 346 |
greg |
2.3 |
const int ii = sortord[i].si;
|
| 347 |
greg |
2.13 |
int j;
|
| 348 |
greg |
2.3 |
/* preload with large radii */
|
| 349 |
greg |
2.10 |
ip->da[ii].dia[bd] =
|
| 350 |
|
|
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
|
| 351 |
|
|
.5*(sortord[ip->ns-1].dm - sortord[0].dm));
|
| 352 |
greg |
2.1 |
for (j = i; ++j < ip->ns; ) /* nearest above */
|
| 353 |
greg |
2.3 |
if (rightrndx[sortord[j].si] > rightrndx[ii] &&
|
| 354 |
|
|
leftrndx[sortord[j].si] < leftrndx[ii]) {
|
| 355 |
greg |
2.10 |
ip->da[ii].dia[bd] = encode_diameter(ip,
|
| 356 |
greg |
2.4 |
sortord[j].dm - sortord[i].dm);
|
| 357 |
greg |
2.1 |
break;
|
| 358 |
|
|
}
|
| 359 |
|
|
for (j = i; j-- > 0; ) /* nearest below */
|
| 360 |
greg |
2.3 |
if (rightrndx[sortord[j].si] < rightrndx[ii] &&
|
| 361 |
|
|
leftrndx[sortord[j].si] > leftrndx[ii]) {
|
| 362 |
greg |
2.10 |
ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
|
| 363 |
greg |
2.4 |
sortord[i].dm - sortord[j].dm);
|
| 364 |
greg |
2.1 |
break;
|
| 365 |
|
|
}
|
| 366 |
|
|
}
|
| 367 |
|
|
}
|
| 368 |
greg |
2.12 |
free(sortord); /* release temp arrays */
|
| 369 |
greg |
2.1 |
free(rightrndx);
|
| 370 |
|
|
free(leftrndx);
|
| 371 |
greg |
2.2 |
free(endrndx);
|
| 372 |
greg |
2.13 |
/* map sample influence areas */
|
| 373 |
|
|
map_influence(ip);
|
| 374 |
greg |
2.12 |
return(1); /* all done */
|
| 375 |
greg |
2.11 |
}
|
| 376 |
|
|
|
| 377 |
greg |
2.1 |
/* Assign full set of normalized weights to interpolate the given position */
|
| 378 |
|
|
int
|
| 379 |
|
|
interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
|
| 380 |
|
|
{
|
| 381 |
|
|
double wnorm;
|
| 382 |
greg |
2.11 |
int fgi[2];
|
| 383 |
greg |
2.1 |
int i;
|
| 384 |
|
|
|
| 385 |
greg |
2.11 |
if (wtv == NULL)
|
| 386 |
|
|
return(0);
|
| 387 |
|
|
/* get flag position */
|
| 388 |
greg |
2.12 |
if (interp2_flagpos(fgi, ip, x, y) < 0)
|
| 389 |
greg |
2.1 |
return(0);
|
| 390 |
|
|
|
| 391 |
|
|
wnorm = 0; /* compute raw weights */
|
| 392 |
greg |
2.11 |
for (i = ip->ns; i--; )
|
| 393 |
greg |
2.12 |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
|
| 394 |
greg |
2.10 |
double wt = interp2_wti(ip, i, x, y);
|
| 395 |
greg |
2.1 |
wtv[i] = wt;
|
| 396 |
|
|
wnorm += wt;
|
| 397 |
greg |
2.12 |
} else
|
| 398 |
|
|
wtv[i] = 0;
|
| 399 |
greg |
2.1 |
if (wnorm <= 0) /* too far from all our samples! */
|
| 400 |
|
|
return(0);
|
| 401 |
|
|
wnorm = 1./wnorm; /* normalize weights */
|
| 402 |
|
|
for (i = ip->ns; i--; )
|
| 403 |
|
|
wtv[i] *= wnorm;
|
| 404 |
|
|
return(ip->ns); /* all done */
|
| 405 |
|
|
}
|
| 406 |
|
|
|
| 407 |
|
|
|
| 408 |
|
|
/* Get normalized weights and indexes for n best samples in descending order */
|
| 409 |
|
|
int
|
| 410 |
|
|
interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
|
| 411 |
|
|
{
|
| 412 |
|
|
int nn = 0;
|
| 413 |
greg |
2.11 |
int fgi[2];
|
| 414 |
greg |
2.1 |
double wnorm;
|
| 415 |
|
|
int i, j;
|
| 416 |
|
|
|
| 417 |
greg |
2.11 |
if ((n <= 0) | (wt == NULL) | (si == NULL))
|
| 418 |
|
|
return(0);
|
| 419 |
|
|
/* get flag position */
|
| 420 |
greg |
2.12 |
if (interp2_flagpos(fgi, ip, x, y) < 0)
|
| 421 |
greg |
2.1 |
return(0);
|
| 422 |
|
|
/* identify top n weights */
|
| 423 |
greg |
2.11 |
for (i = ip->ns; i--; )
|
| 424 |
greg |
2.12 |
if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
|
| 425 |
greg |
2.10 |
const double wti = interp2_wti(ip, i, x, y);
|
| 426 |
greg |
2.1 |
for (j = nn; j > 0; j--) {
|
| 427 |
greg |
2.3 |
if (wt[j-1] >= wti)
|
| 428 |
greg |
2.1 |
break;
|
| 429 |
|
|
if (j < n) {
|
| 430 |
|
|
wt[j] = wt[j-1];
|
| 431 |
|
|
si[j] = si[j-1];
|
| 432 |
|
|
}
|
| 433 |
|
|
}
|
| 434 |
|
|
if (j < n) { /* add/insert sample */
|
| 435 |
greg |
2.3 |
wt[j] = wti;
|
| 436 |
greg |
2.1 |
si[j] = i;
|
| 437 |
|
|
nn += (nn < n);
|
| 438 |
|
|
}
|
| 439 |
greg |
2.11 |
}
|
| 440 |
greg |
2.3 |
wnorm = 0; /* normalize sample weights */
|
| 441 |
|
|
for (j = nn; j--; )
|
| 442 |
|
|
wnorm += wt[j];
|
| 443 |
greg |
2.1 |
if (wnorm <= 0)
|
| 444 |
|
|
return(0);
|
| 445 |
|
|
wnorm = 1./wnorm;
|
| 446 |
|
|
for (j = nn; j--; )
|
| 447 |
|
|
wt[j] *= wnorm;
|
| 448 |
|
|
return(nn); /* return actual # samples */
|
| 449 |
|
|
}
|
| 450 |
|
|
|
| 451 |
|
|
/* Free interpolant */
|
| 452 |
|
|
void
|
| 453 |
|
|
interp2_free(INTERP2 *ip)
|
| 454 |
|
|
{
|
| 455 |
|
|
if (ip == NULL)
|
| 456 |
|
|
return;
|
| 457 |
greg |
2.4 |
if (ip->da != NULL)
|
| 458 |
|
|
free(ip->da);
|
| 459 |
greg |
2.1 |
free(ip);
|
| 460 |
|
|
}
|