ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.12
Committed: Fri Feb 15 19:15:16 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.11: +116 -99 lines
Log Message:
Changed from blkflg to influence flag array

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.12 static const char RCSid[] = "$Id: interp2d.c,v 2.11 2013/02/15 01:26:47 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20 greg 2.7 * angular slice. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26 greg 2.10 * a fast approximation to the atan2(y,x) function and an array
27     * of flags indicating where weights are (nearly) zero.
28 greg 2.4 ****************************************************************/
29 greg 2.1
30     #include <stdio.h>
31     #include <stdlib.h>
32     #include "rtmath.h"
33     #include "interp2d.h"
34    
35 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37 greg 2.1
38     /* Sample order (private) */
39     typedef struct {
40     int si; /* sample index */
41     float dm; /* distance measure in this direction */
42     } SAMPORD;
43    
44 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
45 greg 2.1 INTERP2 *
46     interp2_alloc(int nsamps)
47     {
48     INTERP2 *nip;
49    
50     if (nsamps <= 1)
51     return(NULL);
52    
53     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
54     if (nip == NULL)
55     return(NULL);
56    
57     nip->ns = nsamps;
58 greg 2.4 nip->dmin = 1; /* default minimum diameter */
59 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
60 greg 2.4 nip->da = NULL;
61 greg 2.1 /* caller must assign spt[] array */
62     return(nip);
63     }
64    
65 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
66     INTERP2 *
67     interp2_realloc(INTERP2 *ip, int nsamps)
68     {
69     if (ip == NULL)
70     return(interp2_alloc(nsamps));
71     if (nsamps <= 1) {
72     interp2_free(ip);
73     return(NULL);
74     }
75 greg 2.8 if (nsamps == ip->ns)
76 greg 2.2 return(ip);
77 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
78     free(ip->da);
79     ip->da = NULL;
80 greg 2.2 }
81     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
82     if (ip == NULL)
83     return(NULL);
84     ip->ns = nsamps;
85     return(ip);
86     }
87    
88 greg 2.5 /* Set minimum distance under which samples will start to merge */
89     void
90     interp2_spacing(INTERP2 *ip, double mind)
91     {
92     if (mind <= 0)
93     return;
94 greg 2.7 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
95 greg 2.5 return;
96     if (ip->da != NULL) { /* will need to recompute distribution */
97     free(ip->da);
98     ip->da = NULL;
99     }
100     ip->dmin = mind;
101     }
102    
103     /* Modify smoothing parameter by the given factor */
104     void
105     interp2_smooth(INTERP2 *ip, double sf)
106     {
107     if ((ip->smf *= sf) < NI2DSMF)
108     ip->smf = NI2DSMF;
109     }
110    
111 greg 2.1 /* private call-back to sort position index */
112     static int
113     cmp_spos(const void *p1, const void *p2)
114     {
115     const SAMPORD *so1 = (const SAMPORD *)p1;
116     const SAMPORD *so2 = (const SAMPORD *)p2;
117    
118     if (so1->dm > so2->dm)
119     return 1;
120     if (so1->dm < so2->dm)
121     return -1;
122     return 0;
123     }
124    
125 greg 2.2 /* private routine to order samples in a particular direction */
126     static void
127     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
128     {
129     const double cosd = cos(ang);
130     const double sind = sin(ang);
131     int i;
132    
133     for (i = ip->ns; i--; ) {
134     sord[i].si = i;
135     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
136     }
137     qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
138     }
139    
140 greg 2.4 /* private routine to encode sample diameter with range checks */
141 greg 2.1 static int
142 greg 2.4 encode_diameter(const INTERP2 *ip, double d)
143 greg 2.1 {
144 greg 2.4 const int ed = ENCODE_DIA(ip, d);
145 greg 2.1
146 greg 2.4 if (ed <= 0)
147 greg 2.1 return(0);
148 greg 2.4 if (ed >= 0xffff)
149 greg 2.1 return(0xffff);
150 greg 2.4 return(ed);
151 greg 2.1 }
152    
153 greg 2.12 /* Compute unnormalized weight for a position relative to a sample */
154     double
155     interp2_wti(INTERP2 *ip, const int i, double x, double y)
156     {
157     double dir, rd, r2, d2;
158     int ri;
159     /* get relative direction */
160     x -= ip->spt[i][0];
161     y -= ip->spt[i][1];
162     dir = atan2a(y, x);
163     dir += 2.*PI*(dir < 0);
164     /* linear radius interpolation */
165     rd = dir * (NI2DIR/2./PI);
166     ri = (int)rd;
167     rd -= (double)ri;
168     rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
169     rd = ip->smf * DECODE_DIA(ip, rd);
170     r2 = 2.*rd*rd;
171     d2 = x*x + y*y;
172     if (d2 > 21.*r2) /* result would be < 1e-9 */
173     return(.0);
174     /* Gaussian times harmonic weighting */
175     return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
176     }
177    
178     /* private call to get grid flag index */
179     static int
180     interp2_flagpos(int fgi[2], INTERP2 *ip, double x, double y)
181     {
182     int inbounds = 0;
183    
184     if (ip == NULL) /* paranoia */
185     return(-1);
186     /* need to compute interpolant? */
187     if (ip->da == NULL && !interp2_analyze(ip))
188     return(-1);
189     /* get x & y grid positions */
190     fgi[0] = (x - ip->smin[0]) * NI2DIM / (ip->smax[0] - ip->smin[0]);
191    
192     if (fgi[0] >= NI2DIM)
193     fgi[0] = NI2DIM-1;
194     else if (fgi[0] < 0)
195     fgi[0] = 0;
196     else
197     ++inbounds;
198    
199     fgi[1] = (y - ip->smin[1]) * NI2DIM / (ip->smax[1] - ip->smin[1]);
200    
201     if (fgi[1] >= NI2DIM)
202     fgi[1] = NI2DIM-1;
203     else if (fgi[1] < 0)
204     fgi[1] = 0;
205     else
206     ++inbounds;
207    
208     return(inbounds == 2);
209     }
210    
211     #define setflg(fl,xi,yi) ((fl)[yi] |= 1<<(xi))
212    
213     #define chkflg(fl,xi,yi) ((fl)[yi]>>(xi) & 1)
214    
215     /* private flood function to determine sample influence */
216     static void
217     influence_flood(INTERP2 *ip, const int i, unsigned short visited[NI2DIM],
218     int xfi, int yfi)
219     {
220     double gx = (xfi+.5)*(1./NI2DIM)*(ip->smax[0] - ip->smin[0]) +
221     ip->smin[0];
222     double gy = (yfi+.5)*(1./NI2DIM)*(ip->smax[1] - ip->smin[1]) +
223     ip->smin[1];
224     double dx = gx - ip->spt[i][0];
225     double dy = gy - ip->spt[i][1];
226    
227     setflg(visited, xfi, yfi);
228    
229     if (dx*dx + dy*dy > 2.*ip->grid2 && interp2_wti(ip, i, gx, gy) <= 1e-7)
230     return;
231    
232     setflg(ip->da[i].infl, xfi, yfi);
233    
234     if (xfi > 0 && !chkflg(visited, xfi-1, yfi))
235     influence_flood(ip, i, visited, xfi-1, yfi);
236    
237     if (yfi > 0 && !chkflg(visited, xfi, yfi-1))
238     influence_flood(ip, i, visited, xfi, yfi-1);
239    
240     if (xfi < NI2DIM-1 && !chkflg(visited, xfi+1, yfi))
241     influence_flood(ip, i, visited, xfi+1, yfi);
242    
243     if (yfi < NI2DIM-1 && !chkflg(visited, xfi, yfi+1))
244     influence_flood(ip, i, visited, xfi, yfi+1);
245     }
246    
247 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
248     int
249     interp2_analyze(INTERP2 *ip)
250 greg 2.1 {
251     SAMPORD *sortord;
252 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
253 greg 2.12 int i, j, bd;
254 greg 2.1 /* sanity checks */
255 greg 2.10 if (ip == NULL)
256     return(0);
257     if (ip->da != NULL) { /* free previous data if any */
258     free(ip->da);
259     ip->da = NULL;
260     }
261     if ((ip->ns <= 1) | (ip->dmin <= 0))
262 greg 2.1 return(0);
263 greg 2.10 /* compute sample domain */
264     ip->smin[0] = ip->smin[1] = FHUGE;
265 greg 2.11 ip->smax[0] = ip->smax[1] = -FHUGE;
266 greg 2.10 for (i = ip->ns; i--; ) {
267 greg 2.12 if (ip->spt[i][0] < ip->smin[0]) ip->smin[0] = ip->spt[i][0];
268     if (ip->spt[i][0] > ip->smax[0]) ip->smax[0] = ip->spt[i][0];
269     if (ip->spt[i][1] < ip->smin[1]) ip->smin[1] = ip->spt[i][1];
270     if (ip->spt[i][1] > ip->smax[1]) ip->smax[1] = ip->spt[i][1];
271 greg 2.1 }
272 greg 2.11 ip->grid2 = ((ip->smax[0]-ip->smin[0])*(ip->smax[0]-ip->smin[0]) +
273     (ip->smax[1]-ip->smin[1])*(ip->smax[1]-ip->smin[1])) *
274     (1./NI2DIM/NI2DIM);
275 greg 2.10 if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
276     return(0);
277     /* allocate analysis data */
278     ip->da = (struct interp2_samp *)calloc( ip->ns,
279     sizeof(struct interp2_samp) );
280     if (ip->da == NULL)
281     return(0);
282 greg 2.12 /* allocate temporary arrays */
283 greg 2.1 sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
284     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
285     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
286 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
287     if ((sortord == NULL) | (rightrndx == NULL) |
288     (leftrndx == NULL) | (endrndx == NULL))
289 greg 2.1 return(0);
290     /* run through bidirections */
291     for (bd = 0; bd < NI2DIR/2; bd++) {
292     const double ang = 2.*PI/NI2DIR*bd;
293 greg 2.2 int *sptr;
294 greg 2.1 /* create right reverse index */
295 greg 2.2 if (bd) { /* re-use from previous iteration? */
296     sptr = rightrndx;
297 greg 2.1 rightrndx = leftrndx;
298     leftrndx = sptr;
299 greg 2.2 } else { /* else sort first half-plane */
300     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
301     for (i = ip->ns; i--; )
302 greg 2.1 rightrndx[sortord[i].si] = i;
303 greg 2.2 /* & store reverse order for later */
304     for (i = ip->ns; i--; )
305     endrndx[sortord[i].si] = ip->ns-1 - i;
306 greg 2.1 }
307     /* create new left reverse index */
308 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
309     sptr = leftrndx;
310     leftrndx = endrndx;
311     endrndx = sptr;
312     } else { /* else compute new half-plane */
313     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
314     for (i = ip->ns; i--; )
315     leftrndx[sortord[i].si] = i;
316 greg 2.1 }
317     /* sort grid values in this direction */
318 greg 2.2 sort_samples(sortord, ip, ang);
319 greg 2.1 /* find nearest neighbors each side */
320 greg 2.2 for (i = ip->ns; i--; ) {
321 greg 2.3 const int ii = sortord[i].si;
322     /* preload with large radii */
323 greg 2.10 ip->da[ii].dia[bd] =
324     ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
325     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
326 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
327 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
328     leftrndx[sortord[j].si] < leftrndx[ii]) {
329 greg 2.10 ip->da[ii].dia[bd] = encode_diameter(ip,
330 greg 2.4 sortord[j].dm - sortord[i].dm);
331 greg 2.1 break;
332     }
333     for (j = i; j-- > 0; ) /* nearest below */
334 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
335     leftrndx[sortord[j].si] > leftrndx[ii]) {
336 greg 2.10 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
337 greg 2.4 sortord[i].dm - sortord[j].dm);
338 greg 2.1 break;
339     }
340     }
341     }
342 greg 2.12 free(sortord); /* release temp arrays */
343 greg 2.1 free(rightrndx);
344     free(leftrndx);
345 greg 2.2 free(endrndx);
346 greg 2.12 /* fill influence maps */
347     for (i = ip->ns; i--; ) {
348     unsigned short visited[NI2DIM];
349     int fgi[2];
350 greg 2.1
351 greg 2.12 for (j = NI2DIM; j--; ) visited[j] = 0;
352     interp2_flagpos(fgi, ip, ip->spt[i][0], ip->spt[i][1]);
353     influence_flood(ip, i, visited, fgi[0], fgi[1]);
354 greg 2.11 }
355 greg 2.12 return(1); /* all done */
356 greg 2.11 }
357    
358 greg 2.1 /* Assign full set of normalized weights to interpolate the given position */
359     int
360     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
361     {
362     double wnorm;
363 greg 2.11 int fgi[2];
364 greg 2.1 int i;
365    
366 greg 2.11 if (wtv == NULL)
367     return(0);
368     /* get flag position */
369 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
370 greg 2.1 return(0);
371    
372     wnorm = 0; /* compute raw weights */
373 greg 2.11 for (i = ip->ns; i--; )
374 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
375 greg 2.10 double wt = interp2_wti(ip, i, x, y);
376 greg 2.1 wtv[i] = wt;
377     wnorm += wt;
378 greg 2.12 } else
379     wtv[i] = 0;
380 greg 2.1 if (wnorm <= 0) /* too far from all our samples! */
381     return(0);
382     wnorm = 1./wnorm; /* normalize weights */
383     for (i = ip->ns; i--; )
384     wtv[i] *= wnorm;
385     return(ip->ns); /* all done */
386     }
387    
388    
389     /* Get normalized weights and indexes for n best samples in descending order */
390     int
391     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
392     {
393     int nn = 0;
394 greg 2.11 int fgi[2];
395 greg 2.1 double wnorm;
396     int i, j;
397    
398 greg 2.11 if ((n <= 0) | (wt == NULL) | (si == NULL))
399     return(0);
400     /* get flag position */
401 greg 2.12 if (interp2_flagpos(fgi, ip, x, y) < 0)
402 greg 2.1 return(0);
403     /* identify top n weights */
404 greg 2.11 for (i = ip->ns; i--; )
405 greg 2.12 if (chkflg(ip->da[i].infl, fgi[0], fgi[1])) {
406 greg 2.10 const double wti = interp2_wti(ip, i, x, y);
407 greg 2.1 for (j = nn; j > 0; j--) {
408 greg 2.3 if (wt[j-1] >= wti)
409 greg 2.1 break;
410     if (j < n) {
411     wt[j] = wt[j-1];
412     si[j] = si[j-1];
413     }
414     }
415     if (j < n) { /* add/insert sample */
416 greg 2.3 wt[j] = wti;
417 greg 2.1 si[j] = i;
418     nn += (nn < n);
419     }
420 greg 2.11 }
421 greg 2.3 wnorm = 0; /* normalize sample weights */
422     for (j = nn; j--; )
423     wnorm += wt[j];
424 greg 2.1 if (wnorm <= 0)
425     return(0);
426     wnorm = 1./wnorm;
427     for (j = nn; j--; )
428     wt[j] *= wnorm;
429     return(nn); /* return actual # samples */
430     }
431    
432     /* Free interpolant */
433     void
434     interp2_free(INTERP2 *ip)
435     {
436     if (ip == NULL)
437     return;
438 greg 2.4 if (ip->da != NULL)
439     free(ip->da);
440 greg 2.1 free(ip);
441     }