ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/interp2d.c
Revision: 2.10
Committed: Thu Feb 14 19:57:10 2013 UTC (11 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.9: +74 -32 lines
Log Message:
Doubled calculation speed and exposed raw weight computation

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.10 static const char RCSid[] = "$Id: interp2d.c,v 2.9 2013/02/12 18:41:39 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * General interpolation method for unstructured values on 2-D plane.
6     *
7     * G.Ward Feb 2013
8     */
9    
10     #include "copyright.h"
11    
12 greg 2.4 /***************************************************************
13 greg 2.1 * This is a general method for 2-D interpolation similar to
14     * radial basis functions but allowing for a good deal of local
15     * anisotropy in the point distribution. Each sample point
16     * is examined to determine the closest neighboring samples in
17     * each of NI2DIR surrounding directions. To speed this
18 greg 2.4 * calculation, we sort the data into half-planes and apply
19     * simple tests to see which neighbor is closest in each
20 greg 2.7 * angular slice. Once we have our approximate neighborhood
21 greg 2.3 * for a sample, we can use it in a modified Gaussian weighting
22 greg 2.4 * with allowing local anisotropy. Harmonic weighting is added
23 greg 2.3 * to reduce the influence of distant neighbors. This yields a
24     * smooth interpolation regardless of how the sample points are
25 greg 2.4 * initially distributed. Evaluation is accelerated by use of
26 greg 2.10 * a fast approximation to the atan2(y,x) function and an array
27     * of flags indicating where weights are (nearly) zero.
28 greg 2.4 ****************************************************************/
29 greg 2.1
30     #include <stdio.h>
31     #include <stdlib.h>
32     #include "rtmath.h"
33     #include "interp2d.h"
34    
35 greg 2.4 #define DECODE_DIA(ip,ed) ((ip)->dmin*(1. + .5*(ed)))
36     #define ENCODE_DIA(ip,d) ((int)(2.*(d)/(ip)->dmin) - 2)
37 greg 2.1
38     /* Sample order (private) */
39     typedef struct {
40     int si; /* sample index */
41     float dm; /* distance measure in this direction */
42     } SAMPORD;
43    
44 greg 2.2 /* Allocate a new set of interpolation samples (caller assigns spt[] array) */
45 greg 2.1 INTERP2 *
46     interp2_alloc(int nsamps)
47     {
48     INTERP2 *nip;
49    
50     if (nsamps <= 1)
51     return(NULL);
52    
53     nip = (INTERP2 *)malloc(sizeof(INTERP2) + sizeof(float)*2*(nsamps-1));
54     if (nip == NULL)
55     return(NULL);
56    
57     nip->ns = nsamps;
58 greg 2.4 nip->dmin = 1; /* default minimum diameter */
59 greg 2.1 nip->smf = NI2DSMF; /* default smoothing factor */
60 greg 2.4 nip->da = NULL;
61 greg 2.1 /* caller must assign spt[] array */
62     return(nip);
63     }
64    
65 greg 2.2 /* Resize interpolation array (caller must assign any new values) */
66     INTERP2 *
67     interp2_realloc(INTERP2 *ip, int nsamps)
68     {
69     if (ip == NULL)
70     return(interp2_alloc(nsamps));
71     if (nsamps <= 1) {
72     interp2_free(ip);
73     return(NULL);
74     }
75 greg 2.8 if (nsamps == ip->ns)
76 greg 2.2 return(ip);
77 greg 2.4 if (ip->da != NULL) { /* will need to recompute distribution */
78     free(ip->da);
79     ip->da = NULL;
80 greg 2.2 }
81     ip = (INTERP2 *)realloc(ip, sizeof(INTERP2)+sizeof(float)*2*(nsamps-1));
82     if (ip == NULL)
83     return(NULL);
84     ip->ns = nsamps;
85     return(ip);
86     }
87    
88 greg 2.5 /* Set minimum distance under which samples will start to merge */
89     void
90     interp2_spacing(INTERP2 *ip, double mind)
91     {
92     if (mind <= 0)
93     return;
94 greg 2.7 if ((.998*ip->dmin <= mind) & (mind <= 1.002*ip->dmin))
95 greg 2.5 return;
96     if (ip->da != NULL) { /* will need to recompute distribution */
97     free(ip->da);
98     ip->da = NULL;
99     }
100     ip->dmin = mind;
101     }
102    
103     /* Modify smoothing parameter by the given factor */
104     void
105     interp2_smooth(INTERP2 *ip, double sf)
106     {
107     if ((ip->smf *= sf) < NI2DSMF)
108     ip->smf = NI2DSMF;
109     }
110    
111 greg 2.1 /* private call-back to sort position index */
112     static int
113     cmp_spos(const void *p1, const void *p2)
114     {
115     const SAMPORD *so1 = (const SAMPORD *)p1;
116     const SAMPORD *so2 = (const SAMPORD *)p2;
117    
118     if (so1->dm > so2->dm)
119     return 1;
120     if (so1->dm < so2->dm)
121     return -1;
122     return 0;
123     }
124    
125 greg 2.2 /* private routine to order samples in a particular direction */
126     static void
127     sort_samples(SAMPORD *sord, const INTERP2 *ip, double ang)
128     {
129     const double cosd = cos(ang);
130     const double sind = sin(ang);
131     int i;
132    
133     for (i = ip->ns; i--; ) {
134     sord[i].si = i;
135     sord[i].dm = cosd*ip->spt[i][0] + sind*ip->spt[i][1];
136     }
137     qsort(sord, ip->ns, sizeof(SAMPORD), &cmp_spos);
138     }
139    
140 greg 2.4 /* private routine to encode sample diameter with range checks */
141 greg 2.1 static int
142 greg 2.4 encode_diameter(const INTERP2 *ip, double d)
143 greg 2.1 {
144 greg 2.4 const int ed = ENCODE_DIA(ip, d);
145 greg 2.1
146 greg 2.4 if (ed <= 0)
147 greg 2.1 return(0);
148 greg 2.4 if (ed >= 0xffff)
149 greg 2.1 return(0xffff);
150 greg 2.4 return(ed);
151 greg 2.1 }
152    
153 greg 2.2 /* (Re)compute anisotropic basis function interpolant (normally automatic) */
154     int
155     interp2_analyze(INTERP2 *ip)
156 greg 2.1 {
157     SAMPORD *sortord;
158 greg 2.2 int *rightrndx, *leftrndx, *endrndx;
159 greg 2.10 int i, bd;
160 greg 2.1 /* sanity checks */
161 greg 2.10 if (ip == NULL)
162     return(0);
163     if (ip->da != NULL) { /* free previous data if any */
164     free(ip->da);
165     ip->da = NULL;
166     }
167     if ((ip->ns <= 1) | (ip->dmin <= 0))
168 greg 2.1 return(0);
169 greg 2.10 /* compute sample domain */
170     ip->smin[0] = ip->smin[1] = FHUGE;
171     ip->smul[0] = ip->smul[1] = -FHUGE;
172     for (i = ip->ns; i--; ) {
173     if (ip->spt[i][0] < ip->smin[0])
174     ip->smin[0] = ip->spt[i][0];
175     if (ip->spt[i][0] > ip->smul[0])
176     ip->smul[0] = ip->spt[i][0];
177     if (ip->spt[i][1] < ip->smin[1])
178     ip->smin[1] = ip->spt[i][1];
179     if (ip->spt[i][1] > ip->smul[1])
180     ip->smul[1] = ip->spt[i][1];
181 greg 2.1 }
182 greg 2.10 ip->smul[0] -= ip->smin[0];
183     ip->smul[1] -= ip->smin[1];
184     ip->grid2 = (ip->smul[0]*ip->smul[0] + ip->smul[1]*ip->smul[1]) *
185     (4./NI2DIM/NI2DIM);
186     if (ip->grid2 <= FTINY*ip->dmin*ip->dmin)
187     return(0);
188     if (ip->smul[0] > FTINY)
189     ip->smul[0] = NI2DIM / ip->smul[0];
190     if (ip->smul[1] > FTINY)
191     ip->smul[1] = NI2DIM / ip->smul[1];
192     /* allocate analysis data */
193     ip->da = (struct interp2_samp *)calloc( ip->ns,
194     sizeof(struct interp2_samp) );
195     if (ip->da == NULL)
196     return(0);
197 greg 2.1 /* get temporary arrays */
198     sortord = (SAMPORD *)malloc(sizeof(SAMPORD)*ip->ns);
199     rightrndx = (int *)malloc(sizeof(int)*ip->ns);
200     leftrndx = (int *)malloc(sizeof(int)*ip->ns);
201 greg 2.2 endrndx = (int *)malloc(sizeof(int)*ip->ns);
202     if ((sortord == NULL) | (rightrndx == NULL) |
203     (leftrndx == NULL) | (endrndx == NULL))
204 greg 2.1 return(0);
205     /* run through bidirections */
206     for (bd = 0; bd < NI2DIR/2; bd++) {
207     const double ang = 2.*PI/NI2DIR*bd;
208 greg 2.2 int *sptr;
209 greg 2.1 /* create right reverse index */
210 greg 2.2 if (bd) { /* re-use from previous iteration? */
211     sptr = rightrndx;
212 greg 2.1 rightrndx = leftrndx;
213     leftrndx = sptr;
214 greg 2.2 } else { /* else sort first half-plane */
215     sort_samples(sortord, ip, PI/2. - PI/NI2DIR);
216     for (i = ip->ns; i--; )
217 greg 2.1 rightrndx[sortord[i].si] = i;
218 greg 2.2 /* & store reverse order for later */
219     for (i = ip->ns; i--; )
220     endrndx[sortord[i].si] = ip->ns-1 - i;
221 greg 2.1 }
222     /* create new left reverse index */
223 greg 2.2 if (bd == NI2DIR/2 - 1) { /* use order from first iteration? */
224     sptr = leftrndx;
225     leftrndx = endrndx;
226     endrndx = sptr;
227     } else { /* else compute new half-plane */
228     sort_samples(sortord, ip, ang + (PI/2. + PI/NI2DIR));
229     for (i = ip->ns; i--; )
230     leftrndx[sortord[i].si] = i;
231 greg 2.1 }
232     /* sort grid values in this direction */
233 greg 2.2 sort_samples(sortord, ip, ang);
234 greg 2.1 /* find nearest neighbors each side */
235 greg 2.2 for (i = ip->ns; i--; ) {
236 greg 2.3 const int ii = sortord[i].si;
237 greg 2.1 int j;
238 greg 2.3 /* preload with large radii */
239 greg 2.10 ip->da[ii].dia[bd] =
240     ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
241     .5*(sortord[ip->ns-1].dm - sortord[0].dm));
242 greg 2.1 for (j = i; ++j < ip->ns; ) /* nearest above */
243 greg 2.3 if (rightrndx[sortord[j].si] > rightrndx[ii] &&
244     leftrndx[sortord[j].si] < leftrndx[ii]) {
245 greg 2.10 ip->da[ii].dia[bd] = encode_diameter(ip,
246 greg 2.4 sortord[j].dm - sortord[i].dm);
247 greg 2.1 break;
248     }
249     for (j = i; j-- > 0; ) /* nearest below */
250 greg 2.3 if (rightrndx[sortord[j].si] < rightrndx[ii] &&
251     leftrndx[sortord[j].si] > leftrndx[ii]) {
252 greg 2.10 ip->da[ii].dia[bd+NI2DIR/2] = encode_diameter(ip,
253 greg 2.4 sortord[i].dm - sortord[j].dm);
254 greg 2.1 break;
255     }
256     }
257     }
258     free(sortord); /* clean up */
259     free(rightrndx);
260     free(leftrndx);
261 greg 2.2 free(endrndx);
262 greg 2.1 return(1);
263     }
264    
265 greg 2.10 /* Compute unnormalized weight for a position relative to a sample */
266     double
267     interp2_wti(INTERP2 *ip, const int i, double x, double y)
268 greg 2.1 {
269 greg 2.10 int xfi, yfi;
270 greg 2.6 double dir, rd, r2, d2;
271 greg 2.1 int ri;
272 greg 2.10 /* need to compute interpolant? */
273     if (ip->da == NULL && !interp2_analyze(ip))
274     return(0);
275     /* get grid position */
276     xfi = (x - ip->smin[0]) * ip->smul[0];
277     if (xfi >= NI2DIM)
278     xfi = NI2DIM-1;
279     else
280     xfi *= (xfi >= 0);
281     yfi = (y - ip->smin[1]) * ip->smul[1];
282     if (yfi >= NI2DIM)
283     yfi = NI2DIM-1;
284     else
285     yfi *= (yfi >= 0);
286     x -= ip->spt[i][0]; /* check distance */
287 greg 2.1 y -= ip->spt[i][1];
288 greg 2.10 d2 = x*x + y*y;
289     /* zero weight this zone? */
290     if (d2 > ip->grid2 && ip->da[i].blkflg[yfi] & 1<<xfi)
291     return(.0);
292    
293     dir = atan2a(y, x); /* get relative direction */
294 greg 2.1 dir += 2.*PI*(dir < 0);
295     /* linear radius interpolation */
296     rd = dir * (NI2DIR/2./PI);
297     ri = (int)rd;
298     rd -= (double)ri;
299 greg 2.10 rd = (1.-rd)*ip->da[i].dia[ri] + rd*ip->da[i].dia[(ri+1)%NI2DIR];
300 greg 2.4 rd = ip->smf * DECODE_DIA(ip, rd);
301 greg 2.6 r2 = 2.*rd*rd;
302 greg 2.10 if (d2 > 21.*r2) { /* result would be < 1e-9 */
303     ip->da[i].blkflg[yfi] |= 1<<xfi;
304 greg 2.6 return(.0);
305 greg 2.10 }
306 greg 2.3 /* Gaussian times harmonic weighting */
307 greg 2.6 return( exp(-d2/r2) * ip->dmin/(ip->dmin + sqrt(d2)) );
308 greg 2.1 }
309    
310     /* Assign full set of normalized weights to interpolate the given position */
311     int
312     interp2_weights(float wtv[], INTERP2 *ip, double x, double y)
313     {
314     double wnorm;
315     int i;
316    
317     if ((wtv == NULL) | (ip == NULL))
318     return(0);
319    
320     wnorm = 0; /* compute raw weights */
321     for (i = ip->ns; i--; ) {
322 greg 2.10 double wt = interp2_wti(ip, i, x, y);
323 greg 2.1 wtv[i] = wt;
324     wnorm += wt;
325     }
326     if (wnorm <= 0) /* too far from all our samples! */
327     return(0);
328     wnorm = 1./wnorm; /* normalize weights */
329     for (i = ip->ns; i--; )
330     wtv[i] *= wnorm;
331     return(ip->ns); /* all done */
332     }
333    
334    
335     /* Get normalized weights and indexes for n best samples in descending order */
336     int
337     interp2_topsamp(float wt[], int si[], const int n, INTERP2 *ip, double x, double y)
338     {
339     int nn = 0;
340     double wnorm;
341     int i, j;
342    
343     if ((n <= 0) | (wt == NULL) | (si == NULL) | (ip == NULL))
344     return(0);
345     /* identify top n weights */
346     for (i = ip->ns; i--; ) {
347 greg 2.10 const double wti = interp2_wti(ip, i, x, y);
348 greg 2.9 if (wti <= 1e-9)
349     continue;
350 greg 2.1 for (j = nn; j > 0; j--) {
351 greg 2.3 if (wt[j-1] >= wti)
352 greg 2.1 break;
353     if (j < n) {
354     wt[j] = wt[j-1];
355     si[j] = si[j-1];
356     }
357     }
358     if (j < n) { /* add/insert sample */
359 greg 2.3 wt[j] = wti;
360 greg 2.1 si[j] = i;
361     nn += (nn < n);
362     }
363     }
364 greg 2.3 wnorm = 0; /* normalize sample weights */
365     for (j = nn; j--; )
366     wnorm += wt[j];
367 greg 2.1 if (wnorm <= 0)
368     return(0);
369     wnorm = 1./wnorm;
370     for (j = nn; j--; )
371     wt[j] *= wnorm;
372     return(nn); /* return actual # samples */
373     }
374    
375     /* Free interpolant */
376     void
377     interp2_free(INTERP2 *ip)
378     {
379     if (ip == NULL)
380     return;
381 greg 2.4 if (ip->da != NULL)
382     free(ip->da);
383 greg 2.1 free(ip);
384     }