| 226 |
|
} |
| 227 |
|
|
| 228 |
|
|
| 229 |
< |
void |
| 229 |
> |
int |
| 230 |
|
viewloc( /* find image location for point */ |
| 231 |
|
FVECT ip, |
| 232 |
|
VIEW *v, |
| 233 |
|
FVECT p |
| 234 |
< |
) |
| 234 |
> |
) /* returns: Good=1, Bad=0, Behind=-1, OutOfFrame=2, Behind+OOF=-2 */ |
| 235 |
|
{ |
| 236 |
|
double d, d2; |
| 237 |
|
FVECT disp; |
| 245 |
|
case VT_PER: /* perspective view */ |
| 246 |
|
d = DOT(disp,v->vdir); |
| 247 |
|
ip[2] = VLEN(disp); |
| 248 |
< |
if (d < 0.0) { /* fold pyramid */ |
| 248 |
> |
if (d < -FTINY) { /* fold pyramid */ |
| 249 |
|
ip[2] = -ip[2]; |
| 250 |
|
d = -d; |
| 251 |
< |
} |
| 252 |
< |
if (d > FTINY) { |
| 253 |
< |
d = 1.0/d; |
| 254 |
< |
disp[0] *= d; |
| 255 |
< |
disp[1] *= d; |
| 256 |
< |
disp[2] *= d; |
| 257 |
< |
} |
| 251 |
> |
} else if (d <= FTINY) |
| 252 |
> |
return(0); /* at infinite edge */ |
| 253 |
> |
d = 1.0/d; |
| 254 |
> |
disp[0] *= d; |
| 255 |
> |
disp[1] *= d; |
| 256 |
> |
disp[2] *= d; |
| 257 |
> |
if (ip[2] < 0.0) d = -d; |
| 258 |
|
ip[2] *= (1.0 - v->vfore*d); |
| 259 |
|
break; |
| 260 |
|
case VT_HEM: /* hemispherical fisheye */ |
| 269 |
|
d = DOT(disp,v->hvec); |
| 270 |
|
d2 = DOT(disp,v->vdir); |
| 271 |
|
ip[0] = 180.0/PI * atan2(d,d2) / v->horiz + 0.5 - v->hoff; |
| 272 |
< |
d = 1.0/sqrt(d*d + d2*d2); |
| 272 |
> |
d = d*d + d2*d2; |
| 273 |
> |
if (d <= FTINY*FTINY) |
| 274 |
> |
return(0); /* at pole */ |
| 275 |
> |
d = 1.0/sqrt(d); |
| 276 |
|
ip[1] = DOT(disp,v->vvec)*d/v->vn2 + 0.5 - v->voff; |
| 277 |
|
ip[2] = VLEN(disp); |
| 278 |
|
ip[2] *= (1.0 - v->vfore*d); |
| 279 |
< |
return; |
| 279 |
> |
goto gotall; |
| 280 |
|
case VT_ANG: /* angular fisheye */ |
| 281 |
|
ip[0] = 0.5 - v->hoff; |
| 282 |
|
ip[1] = 0.5 - v->voff; |
| 283 |
|
ip[2] = normalize(disp) - v->vfore; |
| 284 |
|
d = DOT(disp,v->vdir); |
| 285 |
|
if (d >= 1.0-FTINY) |
| 286 |
< |
return; |
| 286 |
> |
goto gotall; |
| 287 |
|
if (d <= -(1.0-FTINY)) { |
| 288 |
|
ip[0] += 180.0/v->horiz; |
| 289 |
< |
return; |
| 289 |
> |
goto gotall; |
| 290 |
|
} |
| 291 |
|
d = (180.0/PI)*acos(d) / sqrt(1.0 - d*d); |
| 292 |
|
ip[0] += DOT(disp,v->hvec)*d/v->horiz; |
| 293 |
|
ip[1] += DOT(disp,v->vvec)*d/v->vert; |
| 294 |
< |
return; |
| 294 |
> |
goto gotall; |
| 295 |
|
case VT_PLS: /* planispheric fisheye */ |
| 296 |
|
ip[0] = 0.5 - v->hoff; |
| 297 |
|
ip[1] = 0.5 - v->voff; |
| 298 |
|
ip[2] = normalize(disp) - v->vfore; |
| 299 |
|
d = DOT(disp,v->vdir); |
| 300 |
|
if (d >= 1.0-FTINY) |
| 301 |
< |
return; |
| 301 |
> |
goto gotall; |
| 302 |
|
if (d <= -(1.0-FTINY)) |
| 303 |
< |
return; /* really an error */ |
| 303 |
> |
return(0); |
| 304 |
|
ip[0] += DOT(disp,v->hvec)/((1. + d)*sqrt(v->hn2)); |
| 305 |
|
ip[1] += DOT(disp,v->vvec)/((1. + d)*sqrt(v->vn2)); |
| 306 |
< |
return; |
| 306 |
> |
goto gotall; |
| 307 |
> |
default: |
| 308 |
> |
return(0); |
| 309 |
|
} |
| 310 |
|
ip[0] = DOT(disp,v->hvec)/v->hn2 + 0.5 - v->hoff; |
| 311 |
|
ip[1] = DOT(disp,v->vvec)/v->vn2 + 0.5 - v->voff; |
| 312 |
+ |
gotall: /* compute return value */ |
| 313 |
+ |
return( (1 - 2*(ip[2] <= 0.0)) * (1 + |
| 314 |
+ |
((0.0 >= ip[0]) | (ip[0] >= 1.0) | (0.0 >= ip[1]) | (ip[1] >= 1.0))) ); |
| 315 |
|
} |
| 316 |
|
|
| 317 |
|
|