| 21 |
|
setview(v) /* set hvec and vvec, return message on error */ |
| 22 |
|
register VIEW *v; |
| 23 |
|
{ |
| 24 |
< |
extern double tan(), normalize(); |
| 25 |
< |
|
| 24 |
> |
static char ill_horiz[] = "illegal horizontal view size"; |
| 25 |
> |
static char ill_vert[] = "illegal vertical view size"; |
| 26 |
> |
|
| 27 |
|
if (normalize(v->vdir) == 0.0) /* normalize direction */ |
| 28 |
|
return("zero view direction"); |
| 29 |
|
|
| 34 |
|
|
| 35 |
|
fcross(v->vvec, v->hvec, v->vdir); /* compute vert dir */ |
| 36 |
|
|
| 37 |
< |
if (v->type == VT_PAR) |
| 37 |
> |
if (v->horiz <= FTINY) |
| 38 |
> |
return(ill_horiz); |
| 39 |
> |
if (v->vert <= FTINY) |
| 40 |
> |
return(ill_vert); |
| 41 |
> |
|
| 42 |
> |
switch (v->type) { |
| 43 |
> |
case VT_PAR: /* parallel view */ |
| 44 |
|
v->hn2 = v->horiz; |
| 45 |
< |
else if (v->type == VT_PER) |
| 45 |
> |
v->vn2 = v->vert; |
| 46 |
> |
break; |
| 47 |
> |
case VT_PER: /* perspective view */ |
| 48 |
> |
if (v->horiz >= 180.0-FTINY) |
| 49 |
> |
return(ill_horiz); |
| 50 |
> |
if (v->vert >= 180.0-FTINY) |
| 51 |
> |
return(ill_vert); |
| 52 |
|
v->hn2 = 2.0 * tan(v->horiz*(PI/180.0/2.0)); |
| 53 |
< |
else |
| 53 |
> |
v->vn2 = 2.0 * tan(v->vert*(PI/180.0/2.0)); |
| 54 |
> |
break; |
| 55 |
> |
case VT_ANG: /* angular fisheye */ |
| 56 |
> |
if (v->horiz > 360.0+FTINY) |
| 57 |
> |
return(ill_horiz); |
| 58 |
> |
if (v->vert > 360.0+FTINY) |
| 59 |
> |
return(ill_vert); |
| 60 |
> |
v->hn2 = v->horiz / 90.0; |
| 61 |
> |
v->vn2 = v->vert / 90.0; |
| 62 |
> |
break; |
| 63 |
> |
case VT_HEM: /* hemispherical fisheye */ |
| 64 |
> |
if (v->horiz > 180.0+FTINY) |
| 65 |
> |
return(ill_horiz); |
| 66 |
> |
if (v->vert > 180.0+FTINY) |
| 67 |
> |
return(ill_vert); |
| 68 |
> |
v->hn2 = 2.0 * sin(v->horiz*(PI/180.0/2.0)); |
| 69 |
> |
v->vn2 = 2.0 * sin(v->vert*(PI/180.0/2.0)); |
| 70 |
> |
break; |
| 71 |
> |
default: |
| 72 |
|
return("unknown view type"); |
| 73 |
< |
|
| 74 |
< |
if (v->hn2 <= FTINY || v->hn2 >= FHUGE) |
| 75 |
< |
return("illegal horizontal view size"); |
| 76 |
< |
|
| 77 |
< |
v->hvec[0] *= v->hn2; |
| 78 |
< |
v->hvec[1] *= v->hn2; |
| 79 |
< |
v->hvec[2] *= v->hn2; |
| 73 |
> |
} |
| 74 |
> |
if (v->type == VT_PAR || v->type == VT_PER) { |
| 75 |
> |
v->hvec[0] *= v->hn2; |
| 76 |
> |
v->hvec[1] *= v->hn2; |
| 77 |
> |
v->hvec[2] *= v->hn2; |
| 78 |
> |
v->vvec[0] *= v->vn2; |
| 79 |
> |
v->vvec[1] *= v->vn2; |
| 80 |
> |
v->vvec[2] *= v->vn2; |
| 81 |
> |
} |
| 82 |
|
v->hn2 *= v->hn2; |
| 50 |
– |
|
| 51 |
– |
if (v->type == VT_PAR) |
| 52 |
– |
v->vn2 = v->vert; |
| 53 |
– |
else |
| 54 |
– |
v->vn2 = 2.0 * tan(v->vert*(PI/180.0/2.0)); |
| 55 |
– |
|
| 56 |
– |
if (v->vn2 <= FTINY || v->vn2 >= FHUGE) |
| 57 |
– |
return("illegal vertical view size"); |
| 58 |
– |
|
| 59 |
– |
v->vvec[0] *= v->vn2; |
| 60 |
– |
v->vvec[1] *= v->vn2; |
| 61 |
– |
v->vvec[2] *= v->vn2; |
| 83 |
|
v->vn2 *= v->vn2; |
| 84 |
|
|
| 85 |
|
return(NULL); |
| 105 |
|
register VIEW *v; |
| 106 |
|
double x, y; |
| 107 |
|
{ |
| 108 |
+ |
double d, z; |
| 109 |
+ |
|
| 110 |
|
x += v->hoff - 0.5; |
| 111 |
|
y += v->voff - 0.5; |
| 112 |
|
|
| 113 |
< |
if (v->type == VT_PAR) { /* parallel view */ |
| 113 |
> |
switch(v->type) { |
| 114 |
> |
case VT_PAR: /* parallel view */ |
| 115 |
|
orig[0] = v->vp[0] + x*v->hvec[0] + y*v->vvec[0]; |
| 116 |
|
orig[1] = v->vp[1] + x*v->hvec[1] + y*v->vvec[1]; |
| 117 |
|
orig[2] = v->vp[2] + x*v->hvec[2] + y*v->vvec[2]; |
| 118 |
|
VCOPY(direc, v->vdir); |
| 119 |
< |
} else { /* perspective view */ |
| 119 |
> |
return(0); |
| 120 |
> |
case VT_PER: /* perspective view */ |
| 121 |
|
VCOPY(orig, v->vp); |
| 122 |
|
direc[0] = v->vdir[0] + x*v->hvec[0] + y*v->vvec[0]; |
| 123 |
|
direc[1] = v->vdir[1] + x*v->hvec[1] + y*v->vvec[1]; |
| 124 |
|
direc[2] = v->vdir[2] + x*v->hvec[2] + y*v->vvec[2]; |
| 125 |
|
normalize(direc); |
| 126 |
+ |
return(0); |
| 127 |
+ |
case VT_HEM: /* hemispherical fisheye */ |
| 128 |
+ |
x *= v->horiz/90.0; |
| 129 |
+ |
y *= v->vert/90.0; |
| 130 |
+ |
z = 1.0 - x*x - y*y; |
| 131 |
+ |
if (z < 0.0) |
| 132 |
+ |
return(-1); |
| 133 |
+ |
z = sqrt(z); |
| 134 |
+ |
VCOPY(orig, v->vp); |
| 135 |
+ |
direc[0] = z*v->vdir[0] + x*v->hvec[0] + y*v->vvec[0]; |
| 136 |
+ |
direc[1] = z*v->vdir[1] + x*v->hvec[1] + y*v->vvec[1]; |
| 137 |
+ |
direc[2] = z*v->vdir[2] + x*v->hvec[2] + y*v->vvec[2]; |
| 138 |
+ |
return(0); |
| 139 |
+ |
case VT_ANG: /* angular fisheye */ |
| 140 |
+ |
x *= v->horiz/180.0; |
| 141 |
+ |
y *= v->vert/180.0; |
| 142 |
+ |
d = x*x + y*y; |
| 143 |
+ |
if (d > 1.0) |
| 144 |
+ |
return(-1); |
| 145 |
+ |
VCOPY(orig, v->vp); |
| 146 |
+ |
if (d <= FTINY) { |
| 147 |
+ |
VCOPY(direc, v->vdir); |
| 148 |
+ |
return(0); |
| 149 |
+ |
} |
| 150 |
+ |
d = sqrt(d); |
| 151 |
+ |
z = cos(PI*d); |
| 152 |
+ |
d = sqrt(1 - z*z)/d; |
| 153 |
+ |
x *= d; |
| 154 |
+ |
y *= d; |
| 155 |
+ |
direc[0] = z*v->vdir[0] + x*v->hvec[0] + y*v->vvec[0]; |
| 156 |
+ |
direc[1] = z*v->vdir[1] + x*v->hvec[1] + y*v->vvec[1]; |
| 157 |
+ |
direc[2] = z*v->vdir[2] + x*v->hvec[2] + y*v->vvec[2]; |
| 158 |
+ |
return(0); |
| 159 |
|
} |
| 160 |
+ |
return(-1); |
| 161 |
|
} |
| 162 |
|
|
| 163 |
|
|
| 166 |
|
register VIEW *v; |
| 167 |
|
FVECT p; |
| 168 |
|
{ |
| 110 |
– |
extern double sqrt(); |
| 169 |
|
double d; |
| 170 |
|
FVECT disp; |
| 171 |
|
|
| 173 |
|
disp[1] = p[1] - v->vp[1]; |
| 174 |
|
disp[2] = p[2] - v->vp[2]; |
| 175 |
|
|
| 176 |
< |
if (v->type == VT_PAR) { /* parallel view */ |
| 176 |
> |
switch (v->type) { |
| 177 |
> |
case VT_PAR: /* parallel view */ |
| 178 |
|
if (zp != NULL) |
| 179 |
|
*zp = DOT(disp,v->vdir); |
| 180 |
< |
} else { /* perspective view */ |
| 180 |
> |
*xp = DOT(disp,v->hvec)/v->hn2 + 0.5 - v->hoff; |
| 181 |
> |
*yp = DOT(disp,v->vvec)/v->vn2 + 0.5 - v->voff; |
| 182 |
> |
return; |
| 183 |
> |
case VT_PER: /* perspective view */ |
| 184 |
|
d = DOT(disp,v->vdir); |
| 185 |
|
if (zp != NULL) { |
| 186 |
|
*zp = sqrt(DOT(disp,disp)); |
| 195 |
|
disp[1] *= d; |
| 196 |
|
disp[2] *= d; |
| 197 |
|
} |
| 198 |
+ |
*xp = DOT(disp,v->hvec)/v->hn2 + 0.5 - v->hoff; |
| 199 |
+ |
*yp = DOT(disp,v->vvec)/v->vn2 + 0.5 - v->voff; |
| 200 |
+ |
return; |
| 201 |
+ |
case VT_HEM: /* hemispherical fisheye */ |
| 202 |
+ |
d = normalize(disp); |
| 203 |
+ |
if (zp != NULL) { |
| 204 |
+ |
if (DOT(disp,v->vdir) < 0.0) |
| 205 |
+ |
*zp = -d; |
| 206 |
+ |
else |
| 207 |
+ |
*zp = d; |
| 208 |
+ |
} |
| 209 |
+ |
*xp = DOT(disp,v->hvec)*90.0/v->horiz + 0.5 - v->hoff; |
| 210 |
+ |
*yp = DOT(disp,v->vvec)*90.0/v->vert + 0.5 - v->voff; |
| 211 |
+ |
return; |
| 212 |
+ |
case VT_ANG: /* angular fisheye */ |
| 213 |
+ |
d = normalize(disp); |
| 214 |
+ |
if (zp != NULL) |
| 215 |
+ |
*zp = d; |
| 216 |
+ |
*xp = 0.5 - v->hoff; |
| 217 |
+ |
*yp = 0.5 - v->voff; |
| 218 |
+ |
d = DOT(disp,v->vdir); |
| 219 |
+ |
if (d >= 1.0-FTINY) |
| 220 |
+ |
return; |
| 221 |
+ |
if (d <= -(1.0-FTINY)) { |
| 222 |
+ |
*xp += 180.0/v->horiz; |
| 223 |
+ |
*yp += 180.0/v->vert; |
| 224 |
+ |
return; |
| 225 |
+ |
} |
| 226 |
+ |
d = acos(d)/PI / sqrt(1.0 - d*d); |
| 227 |
+ |
*xp += DOT(disp,v->hvec)*d*180.0/v->horiz; |
| 228 |
+ |
*yp += DOT(disp,v->vvec)*d*180.0/v->vert; |
| 229 |
+ |
return; |
| 230 |
|
} |
| 137 |
– |
*xp = DOT(disp,v->hvec)/v->hn2 + 0.5 - v->hoff; |
| 138 |
– |
*yp = DOT(disp,v->vvec)/v->vn2 + 0.5 - v->voff; |
| 231 |
|
} |
| 232 |
|
|
| 233 |
|
|