| 1 |
/* See LICENSE below for information on rights to use, modify and distribute
|
| 2 |
this code. */
|
| 3 |
|
| 4 |
/*
|
| 5 |
* hilbert.c - Computes Hilbert space-filling curve coordinates, without
|
| 6 |
* recursion, from integer index, and vice versa, and other Hilbert-related
|
| 7 |
* calculations. Also known as Pi-order or Peano scan.
|
| 8 |
*
|
| 9 |
* Author: Doug Moore
|
| 10 |
* Dept. of Computational and Applied Math
|
| 11 |
* Rice University
|
| 12 |
* http://www.caam.rice.edu/~dougm
|
| 13 |
* Date: Sun Feb 20 2000
|
| 14 |
* Copyright (c) 1998-2000, Rice University
|
| 15 |
*
|
| 16 |
* Acknowledgement:
|
| 17 |
* This implementation is based on the work of A. R. Butz ("Alternative
|
| 18 |
* Algorithm for Hilbert's Space-Filling Curve", IEEE Trans. Comp., April,
|
| 19 |
* 1971, pp 424-426) and its interpretation by Spencer W. Thomas, University
|
| 20 |
* of Michigan (http://www-personal.umich.edu/~spencer/Home.html) in his widely
|
| 21 |
* available C software. While the implementation here differs considerably
|
| 22 |
* from his, the first two interfaces and the style of some comments are very
|
| 23 |
* much derived from his work. */
|
| 24 |
|
| 25 |
|
| 26 |
#include "hilbert.h"
|
| 27 |
|
| 28 |
/* implementation of the hilbert functions */
|
| 29 |
|
| 30 |
#define adjust_rotation(rotation,nDims,bits) \
|
| 31 |
do { \
|
| 32 |
/* rotation = (rotation + 1 + ffs(bits)) % nDims; */ \
|
| 33 |
bits &= -bits & nd1Ones; \
|
| 34 |
while (bits) \
|
| 35 |
bits >>= 1, ++rotation; \
|
| 36 |
if ( ++rotation >= nDims ) \
|
| 37 |
rotation -= nDims; \
|
| 38 |
} while (0)
|
| 39 |
|
| 40 |
#define ones(T,k) ((((T)2) << (k-1)) - 1)
|
| 41 |
|
| 42 |
#define rdbit(w,k) (((w) >> (k)) & 1)
|
| 43 |
|
| 44 |
#define rotateRight(arg, nRots, nDims) \
|
| 45 |
((((arg) >> (nRots)) | ((arg) << ((nDims)-(nRots)))) & ones(bitmask_t,nDims))
|
| 46 |
|
| 47 |
#define rotateLeft(arg, nRots, nDims) \
|
| 48 |
((((arg) << (nRots)) | ((arg) >> ((nDims)-(nRots)))) & ones(bitmask_t,nDims))
|
| 49 |
|
| 50 |
#define DLOGB_BIT_TRANSPOSE
|
| 51 |
static bitmask_t
|
| 52 |
bitTranspose(unsigned nDims, unsigned nBits, bitmask_t inCoords)
|
| 53 |
#if defined(DLOGB_BIT_TRANSPOSE)
|
| 54 |
{
|
| 55 |
unsigned const nDims1 = nDims-1;
|
| 56 |
unsigned inB = nBits;
|
| 57 |
unsigned utB;
|
| 58 |
bitmask_t inFieldEnds = 1;
|
| 59 |
bitmask_t inMask = ones(bitmask_t,inB);
|
| 60 |
bitmask_t coords = 0;
|
| 61 |
|
| 62 |
while ((utB = inB >> 1))
|
| 63 |
{
|
| 64 |
unsigned const shiftAmt = nDims1 * utB;
|
| 65 |
bitmask_t const utFieldEnds =
|
| 66 |
inFieldEnds | (inFieldEnds << (shiftAmt+utB));
|
| 67 |
bitmask_t const utMask =
|
| 68 |
(utFieldEnds << utB) - utFieldEnds;
|
| 69 |
bitmask_t utCoords = 0;
|
| 70 |
unsigned d;
|
| 71 |
if (inB & 1)
|
| 72 |
{
|
| 73 |
bitmask_t const inFieldStarts = inFieldEnds << (inB-1);
|
| 74 |
unsigned oddShift = 2*shiftAmt;
|
| 75 |
for (d = 0; d < nDims; ++d)
|
| 76 |
{
|
| 77 |
bitmask_t in = inCoords & inMask;
|
| 78 |
inCoords >>= inB;
|
| 79 |
coords |= (in & inFieldStarts) << oddShift++;
|
| 80 |
in &= ~inFieldStarts;
|
| 81 |
in = (in | (in << shiftAmt)) & utMask;
|
| 82 |
utCoords |= in << (d*utB);
|
| 83 |
}
|
| 84 |
}
|
| 85 |
else
|
| 86 |
{
|
| 87 |
for (d = 0; d < nDims; ++d)
|
| 88 |
{
|
| 89 |
bitmask_t in = inCoords & inMask;
|
| 90 |
inCoords >>= inB;
|
| 91 |
in = (in | (in << shiftAmt)) & utMask;
|
| 92 |
utCoords |= in << (d*utB);
|
| 93 |
}
|
| 94 |
}
|
| 95 |
inCoords = utCoords;
|
| 96 |
inB = utB;
|
| 97 |
inFieldEnds = utFieldEnds;
|
| 98 |
inMask = utMask;
|
| 99 |
}
|
| 100 |
coords |= inCoords;
|
| 101 |
return coords;
|
| 102 |
}
|
| 103 |
#else
|
| 104 |
{
|
| 105 |
bitmask_t coords = 0;
|
| 106 |
unsigned d;
|
| 107 |
for (d = 0; d < nDims; ++d)
|
| 108 |
{
|
| 109 |
unsigned b;
|
| 110 |
bitmask_t in = inCoords & ones(bitmask_t,nBits);
|
| 111 |
bitmask_t out = 0;
|
| 112 |
inCoords >>= nBits;
|
| 113 |
for (b = nBits; b--;)
|
| 114 |
{
|
| 115 |
out <<= nDims;
|
| 116 |
out |= rdbit(in, b);
|
| 117 |
}
|
| 118 |
coords |= out << d;
|
| 119 |
}
|
| 120 |
return coords;
|
| 121 |
}
|
| 122 |
#endif
|
| 123 |
|
| 124 |
/*****************************************************************
|
| 125 |
* hilbert_i2c
|
| 126 |
*
|
| 127 |
* Convert an index into a Hilbert curve to a set of coordinates.
|
| 128 |
* Inputs:
|
| 129 |
* nDims: Number of coordinate axes.
|
| 130 |
* nBits: Number of bits per axis.
|
| 131 |
* index: The index, contains nDims*nBits bits
|
| 132 |
* (so nDims*nBits must be <= 8*sizeof(bitmask_t)).
|
| 133 |
* Outputs:
|
| 134 |
* coord: The list of nDims coordinates, each with nBits bits.
|
| 135 |
* Assumptions:
|
| 136 |
* nDims*nBits <= (sizeof index) * (bits_per_byte)
|
| 137 |
*/
|
| 138 |
void
|
| 139 |
hilbert_i2c(unsigned nDims, unsigned nBits, bitmask_t index, bitmask_t coord[])
|
| 140 |
{
|
| 141 |
if (nDims > 1)
|
| 142 |
{
|
| 143 |
bitmask_t coords;
|
| 144 |
halfmask_t const nbOnes = ones(halfmask_t,nBits);
|
| 145 |
unsigned d;
|
| 146 |
|
| 147 |
if (nBits > 1)
|
| 148 |
{
|
| 149 |
unsigned const nDimsBits = nDims*nBits;
|
| 150 |
halfmask_t const ndOnes = ones(halfmask_t,nDims);
|
| 151 |
halfmask_t const nd1Ones= ndOnes >> 1; /* for adjust_rotation */
|
| 152 |
unsigned b = nDimsBits;
|
| 153 |
unsigned rotation = 0;
|
| 154 |
halfmask_t flipBit = 0;
|
| 155 |
bitmask_t const nthbits = ones(bitmask_t,nDimsBits) / ndOnes;
|
| 156 |
index ^= (index ^ nthbits) >> 1;
|
| 157 |
coords = 0;
|
| 158 |
do
|
| 159 |
{
|
| 160 |
halfmask_t bits = (index >> (b-=nDims)) & ndOnes;
|
| 161 |
coords <<= nDims;
|
| 162 |
coords |= rotateLeft(bits, rotation, nDims) ^ flipBit;
|
| 163 |
flipBit = (halfmask_t)1 << rotation;
|
| 164 |
adjust_rotation(rotation,nDims,bits);
|
| 165 |
} while (b);
|
| 166 |
for (b = nDims; b < nDimsBits; b *= 2)
|
| 167 |
coords ^= coords >> b;
|
| 168 |
coords = bitTranspose(nBits, nDims, coords);
|
| 169 |
}
|
| 170 |
else
|
| 171 |
coords = index ^ (index >> 1);
|
| 172 |
|
| 173 |
for (d = 0; d < nDims; ++d)
|
| 174 |
{
|
| 175 |
coord[d] = coords & nbOnes;
|
| 176 |
coords >>= nBits;
|
| 177 |
}
|
| 178 |
}
|
| 179 |
else
|
| 180 |
coord[0] = index;
|
| 181 |
}
|
| 182 |
|
| 183 |
/*****************************************************************
|
| 184 |
* hilbert_c2i
|
| 185 |
*
|
| 186 |
* Convert coordinates of a point on a Hilbert curve to its index.
|
| 187 |
* Inputs:
|
| 188 |
* nDims: Number of coordinates.
|
| 189 |
* nBits: Number of bits/coordinate.
|
| 190 |
* coord: Array of n nBits-bit coordinates.
|
| 191 |
* Outputs:
|
| 192 |
* index: Output index value. nDims*nBits bits.
|
| 193 |
* Assumptions:
|
| 194 |
* nDims*nBits <= (sizeof bitmask_t) * (bits_per_byte)
|
| 195 |
*/
|
| 196 |
bitmask_t
|
| 197 |
hilbert_c2i(unsigned nDims, unsigned nBits, bitmask_t const coord[])
|
| 198 |
{
|
| 199 |
if (nDims > 1)
|
| 200 |
{
|
| 201 |
unsigned const nDimsBits = nDims*nBits;
|
| 202 |
bitmask_t index;
|
| 203 |
unsigned d;
|
| 204 |
bitmask_t coords = 0;
|
| 205 |
for (d = nDims; d--; )
|
| 206 |
{
|
| 207 |
coords <<= nBits;
|
| 208 |
coords |= coord[d];
|
| 209 |
}
|
| 210 |
|
| 211 |
if (nBits > 1)
|
| 212 |
{
|
| 213 |
halfmask_t const ndOnes = ones(halfmask_t,nDims);
|
| 214 |
halfmask_t const nd1Ones= ndOnes >> 1; /* for adjust_rotation */
|
| 215 |
unsigned b = nDimsBits;
|
| 216 |
unsigned rotation = 0;
|
| 217 |
halfmask_t flipBit = 0;
|
| 218 |
bitmask_t const nthbits = ones(bitmask_t,nDimsBits) / ndOnes;
|
| 219 |
coords = bitTranspose(nDims, nBits, coords);
|
| 220 |
coords ^= coords >> nDims;
|
| 221 |
index = 0;
|
| 222 |
do
|
| 223 |
{
|
| 224 |
halfmask_t bits = (coords >> (b-=nDims)) & ndOnes;
|
| 225 |
bits = rotateRight(flipBit ^ bits, rotation, nDims);
|
| 226 |
index <<= nDims;
|
| 227 |
index |= bits;
|
| 228 |
flipBit = (halfmask_t)1 << rotation;
|
| 229 |
adjust_rotation(rotation,nDims,bits);
|
| 230 |
} while (b);
|
| 231 |
index ^= nthbits >> 1;
|
| 232 |
}
|
| 233 |
else
|
| 234 |
index = coords;
|
| 235 |
for (d = 1; d < nDimsBits; d *= 2)
|
| 236 |
index ^= index >> d;
|
| 237 |
return index;
|
| 238 |
}
|
| 239 |
else
|
| 240 |
return coord[0];
|
| 241 |
}
|
| 242 |
|
| 243 |
/*****************************************************************
|
| 244 |
* Readers and writers of bits
|
| 245 |
*/
|
| 246 |
|
| 247 |
typedef bitmask_t (*BitReader) (unsigned nDims, unsigned nBytes,
|
| 248 |
char const* c, unsigned y);
|
| 249 |
typedef void (*BitWriter) (unsigned d, unsigned nBytes,
|
| 250 |
char* c, unsigned y, int fold);
|
| 251 |
|
| 252 |
|
| 253 |
#if defined(sparc)
|
| 254 |
#define __BIG_ENDIAN__
|
| 255 |
#endif
|
| 256 |
|
| 257 |
#if defined(__BIG_ENDIAN__)
|
| 258 |
#define whichByte(nBytes,y) (nBytes-1-y/8)
|
| 259 |
#define setBytes(dst,pos,nBytes,val) \
|
| 260 |
memset(&dst[pos+1],val,nBytes-pos-1)
|
| 261 |
#else
|
| 262 |
#define whichByte(nBytes,y) (y/8)
|
| 263 |
#define setBytes(dst,pos,nBytes,val) \
|
| 264 |
memset(&dst[0],val,pos)
|
| 265 |
#endif
|
| 266 |
|
| 267 |
static bitmask_t
|
| 268 |
getIntBits(unsigned nDims, unsigned nBytes, char const* c, unsigned y)
|
| 269 |
{
|
| 270 |
unsigned const bit = y%8;
|
| 271 |
unsigned const offs = whichByte(nBytes,y);
|
| 272 |
unsigned d;
|
| 273 |
bitmask_t bits = 0;
|
| 274 |
c += offs;
|
| 275 |
for (d = 0; d < nDims; ++d)
|
| 276 |
{
|
| 277 |
bits |= rdbit(*c, bit) << d;
|
| 278 |
c += nBytes;
|
| 279 |
}
|
| 280 |
return bits;
|
| 281 |
}
|
| 282 |
|
| 283 |
#include <string.h>
|
| 284 |
static void
|
| 285 |
propogateIntBits(unsigned d, unsigned nBytes,
|
| 286 |
char* c, unsigned y, int fold)
|
| 287 |
{
|
| 288 |
unsigned const byteId = whichByte(nBytes,y);
|
| 289 |
unsigned const b = y%8;
|
| 290 |
char const bthbit = 1 << b;
|
| 291 |
char* const target = &c[d*nBytes];
|
| 292 |
target[byteId] ^= bthbit;
|
| 293 |
if (!fold)
|
| 294 |
{
|
| 295 |
char notbit = ((target[byteId] >> b) & 1) - 1;
|
| 296 |
if (notbit)
|
| 297 |
target[byteId] |= bthbit-1;
|
| 298 |
else
|
| 299 |
target[byteId] &= -bthbit;
|
| 300 |
setBytes(target,byteId,nBytes,notbit);
|
| 301 |
}
|
| 302 |
}
|
| 303 |
|
| 304 |
/* An IEEE double is treated as a 2100 bit number. In particular, 0 is treated
|
| 305 |
as a 1 followed by 2099 zeroes, and negative 0 as a 0 followed by 2099 ones.
|
| 306 |
Only 53 bits differ between a number and a zero of the same sign, with the
|
| 307 |
position of the 53 determined by the exponent, and the values of the 53 by
|
| 308 |
the significand (with implicit leading 1 bit). Although IEEE 754 uses the
|
| 309 |
maximum exponent for NaN's and infinities, this implementation ignores that
|
| 310 |
decision, so that infinities and NaN's are treated as very large numbers.
|
| 311 |
Note that we do not explicitly construct a 2100 bit bitmask in the IEEE
|
| 312 |
routines below. */
|
| 313 |
|
| 314 |
enum { IEEEexpBits = 11 };
|
| 315 |
enum { IEEEsigBits = 52 };
|
| 316 |
enum { IEEErepBits = (1 << IEEEexpBits) + IEEEsigBits };
|
| 317 |
|
| 318 |
typedef union ieee754_double
|
| 319 |
{
|
| 320 |
double d;
|
| 321 |
|
| 322 |
/* This is the IEEE 754 double-precision format. */
|
| 323 |
struct
|
| 324 |
{
|
| 325 |
#if defined(__BIG_ENDIAN__)
|
| 326 |
unsigned int negative:1;
|
| 327 |
unsigned int exponent:11;
|
| 328 |
/* Together these comprise the mantissa. */
|
| 329 |
unsigned int mantissa0:20;
|
| 330 |
unsigned int mantissa1:32;
|
| 331 |
#else /* Big endian. */
|
| 332 |
/* Together these comprise the mantissa. */
|
| 333 |
unsigned int mantissa1:32;
|
| 334 |
unsigned int mantissa0:20;
|
| 335 |
unsigned int exponent:11;
|
| 336 |
unsigned int negative:1;
|
| 337 |
#endif /* Little endian. */
|
| 338 |
} ieee;
|
| 339 |
} ieee754_double;
|
| 340 |
|
| 341 |
static bitmask_t
|
| 342 |
getIEEESignBits(unsigned nDims, double const* c)
|
| 343 |
{
|
| 344 |
unsigned d;
|
| 345 |
ieee754_double x;
|
| 346 |
bitmask_t bits = 0;
|
| 347 |
for (d = 0; d < nDims; ++d)
|
| 348 |
{
|
| 349 |
x.d = c[d];
|
| 350 |
bits |= x.ieee.negative << d;
|
| 351 |
}
|
| 352 |
return bits;
|
| 353 |
}
|
| 354 |
|
| 355 |
static bitmask_t
|
| 356 |
getIEEEBits(unsigned nDims,
|
| 357 |
unsigned ignoreMe, /* ignored */
|
| 358 |
char const* cP,
|
| 359 |
unsigned y)
|
| 360 |
/* retrieve bits y of elements of double array c, where an expanded IEEE
|
| 361 |
double has 2100 bits. */
|
| 362 |
{
|
| 363 |
unsigned d;
|
| 364 |
double const* c = (double const*) cP;
|
| 365 |
ieee754_double x;
|
| 366 |
bitmask_t bits = 0;
|
| 367 |
for (x.d = c[d=0]; d < nDims; x.d = c[++d])
|
| 368 |
{
|
| 369 |
bitmask_t bit = x.ieee.negative;
|
| 370 |
unsigned normalized = (x.ieee.exponent != 0);
|
| 371 |
unsigned diff = y - (x.ieee.exponent - normalized);
|
| 372 |
if (diff <= 52)
|
| 373 |
bit ^= 1 & ((diff < 32)? x.ieee.mantissa1 >> diff:
|
| 374 |
(diff < 52)? x.ieee.mantissa0 >> (diff - 32):
|
| 375 |
/* else */ normalized);
|
| 376 |
else
|
| 377 |
bit ^= (y == IEEErepBits-1);
|
| 378 |
|
| 379 |
bits |= bit << d;
|
| 380 |
}
|
| 381 |
return bits;
|
| 382 |
}
|
| 383 |
|
| 384 |
static void
|
| 385 |
propogateIEEEBits(unsigned d, unsigned nBytes,
|
| 386 |
char* cP, unsigned y, int fold)
|
| 387 |
{
|
| 388 |
ieee754_double* x = d + (ieee754_double*) cP;
|
| 389 |
unsigned normalized = (x->ieee.exponent != 0);
|
| 390 |
unsigned diff = y - (x->ieee.exponent - normalized);
|
| 391 |
if (diff < 32)
|
| 392 |
{
|
| 393 |
unsigned b = 1 << diff;
|
| 394 |
unsigned bit = x->ieee.mantissa1 & b;
|
| 395 |
x->ieee.mantissa1 &= ~(b-1);
|
| 396 |
x->ieee.mantissa1 |= b;
|
| 397 |
if (bit)
|
| 398 |
--x->ieee.mantissa1;
|
| 399 |
}
|
| 400 |
else if (diff < 52)
|
| 401 |
{
|
| 402 |
unsigned b = 1 << (diff - 32);
|
| 403 |
unsigned bit = x->ieee.mantissa0 & b;
|
| 404 |
x->ieee.mantissa0 &= ~(b-1);
|
| 405 |
x->ieee.mantissa0 |= b;
|
| 406 |
if (bit)
|
| 407 |
--x->ieee.mantissa0;
|
| 408 |
x->ieee.mantissa1 = bit?-1: 0;
|
| 409 |
}
|
| 410 |
else if (diff == 52) /* "flip" the implicit 1 bit */
|
| 411 |
{
|
| 412 |
if (normalized)
|
| 413 |
--x->ieee.exponent;
|
| 414 |
else
|
| 415 |
x->ieee.exponent = 1;
|
| 416 |
x->ieee.mantissa0 = -normalized;
|
| 417 |
x->ieee.mantissa1 = -normalized;
|
| 418 |
}
|
| 419 |
else if (diff < IEEErepBits)
|
| 420 |
{
|
| 421 |
if (y == IEEErepBits-1)
|
| 422 |
{
|
| 423 |
x->ieee.negative ^= 1;
|
| 424 |
x->ieee.exponent = 0;
|
| 425 |
}
|
| 426 |
else
|
| 427 |
x->ieee.exponent = y - 51;
|
| 428 |
x->ieee.mantissa0 = 0;
|
| 429 |
x->ieee.mantissa1 = 0;
|
| 430 |
}
|
| 431 |
}
|
| 432 |
|
| 433 |
static unsigned
|
| 434 |
getIEEEexptMax(unsigned nDims, double const* c)
|
| 435 |
{
|
| 436 |
unsigned max = 0;
|
| 437 |
unsigned d;
|
| 438 |
for (d = 0; d < nDims; ++d)
|
| 439 |
{
|
| 440 |
ieee754_double x;
|
| 441 |
x.d = c[d];
|
| 442 |
if (max < x.ieee.exponent)
|
| 443 |
max = x.ieee.exponent;
|
| 444 |
}
|
| 445 |
if (max) --max;
|
| 446 |
return max;
|
| 447 |
}
|
| 448 |
|
| 449 |
static void
|
| 450 |
getIEEEinitValues(double const* c1,
|
| 451 |
unsigned y,
|
| 452 |
unsigned nDims,
|
| 453 |
unsigned* rotation,
|
| 454 |
bitmask_t* bits,
|
| 455 |
bitmask_t* index)
|
| 456 |
{
|
| 457 |
bitmask_t const one = 1;
|
| 458 |
unsigned d;
|
| 459 |
bitmask_t signBits = getIEEESignBits(nDims, c1);
|
| 460 |
unsigned signParity, leastZeroBit, strayBit;
|
| 461 |
|
| 462 |
/* compute the odd/evenness of the number of sign bits */
|
| 463 |
{
|
| 464 |
bitmask_t signPar = signBits;
|
| 465 |
for (d = 1; d < nDims; d *= 2)
|
| 466 |
signPar ^= signPar >> d;
|
| 467 |
signParity = signPar & 1;
|
| 468 |
}
|
| 469 |
|
| 470 |
/* find the position of the least-order 0 bit in among signBits and adjust it
|
| 471 |
if necessary */
|
| 472 |
for (leastZeroBit = 0; leastZeroBit < nDims; ++leastZeroBit)
|
| 473 |
if (rdbit(signBits, leastZeroBit) == 0)
|
| 474 |
break;
|
| 475 |
strayBit = 0;
|
| 476 |
if (leastZeroBit == nDims-2)
|
| 477 |
strayBit = 1;
|
| 478 |
else if (leastZeroBit == nDims)
|
| 479 |
leastZeroBit = nDims-1;
|
| 480 |
|
| 481 |
if (y % 2 == 1)
|
| 482 |
{
|
| 483 |
*rotation = (IEEErepBits - y + 1 + leastZeroBit) % nDims;
|
| 484 |
if (y < IEEErepBits-1)
|
| 485 |
{
|
| 486 |
*bits = signBits ^ (one << ((*rotation + strayBit) % nDims));
|
| 487 |
*index = signParity;
|
| 488 |
}
|
| 489 |
else /* y == IEEErepBits-1 */
|
| 490 |
{
|
| 491 |
*bits = signBits ^ (ones(bitmask_t,nDims) &~ 1);
|
| 492 |
*index = signParity ^ (nDims&1);
|
| 493 |
}
|
| 494 |
}
|
| 495 |
else /* y % 2 == 0 */
|
| 496 |
if (y < IEEErepBits)
|
| 497 |
{
|
| 498 |
unsigned shift_amt = (IEEErepBits - y + leastZeroBit) % nDims;
|
| 499 |
*rotation = (shift_amt + 2 + strayBit) % nDims;
|
| 500 |
*bits = signBits ^ (one << shift_amt);
|
| 501 |
*index = signParity ^ 1;
|
| 502 |
}
|
| 503 |
else /* y == IEEErepBits */
|
| 504 |
{
|
| 505 |
*rotation = 0;
|
| 506 |
*bits = one << (nDims-1);
|
| 507 |
*index = 1;
|
| 508 |
}
|
| 509 |
}
|
| 510 |
|
| 511 |
/*****************************************************************
|
| 512 |
* hilbert_cmp, hilbert_ieee_cmp
|
| 513 |
*
|
| 514 |
* Determine which of two points lies further along the Hilbert curve
|
| 515 |
* Inputs:
|
| 516 |
* nDims: Number of coordinates.
|
| 517 |
* nBytes: Number of bytes of storage/coordinate (hilbert_cmp only)
|
| 518 |
* nBits: Number of bits/coordinate. (hilbert_cmp only)
|
| 519 |
* coord1: Array of nDims nBytes-byte coordinates (or doubles for ieee_cmp).
|
| 520 |
* coord2: Array of nDims nBytes-byte coordinates (or doubles for ieee_cmp).
|
| 521 |
* Return value:
|
| 522 |
* -1, 0, or 1 according to whether
|
| 523 |
coord1<coord2, coord1==coord2, coord1>coord2
|
| 524 |
* Assumptions:
|
| 525 |
* nBits <= (sizeof bitmask_t) * (bits_per_byte)
|
| 526 |
*/
|
| 527 |
|
| 528 |
static int
|
| 529 |
hilbert_cmp_work(unsigned nDims, unsigned nBytes, unsigned nBits,
|
| 530 |
unsigned max, unsigned y,
|
| 531 |
char const* c1, char const* c2,
|
| 532 |
unsigned rotation,
|
| 533 |
bitmask_t bits,
|
| 534 |
bitmask_t index,
|
| 535 |
BitReader getBits)
|
| 536 |
{
|
| 537 |
bitmask_t const one = 1;
|
| 538 |
bitmask_t const nd1Ones = ones(bitmask_t,nDims) >> 1; /* used in adjust_rotation macro */
|
| 539 |
while (y-- > max)
|
| 540 |
{
|
| 541 |
bitmask_t reflection = getBits(nDims, nBytes, c1, y);
|
| 542 |
bitmask_t diff = reflection ^ getBits(nDims, nBytes, c2, y);
|
| 543 |
bits ^= reflection;
|
| 544 |
bits = rotateRight(bits, rotation, nDims);
|
| 545 |
if (diff)
|
| 546 |
{
|
| 547 |
unsigned d;
|
| 548 |
diff = rotateRight(diff, rotation, nDims);
|
| 549 |
for (d = 1; d < nDims; d *= 2)
|
| 550 |
{
|
| 551 |
index ^= index >> d;
|
| 552 |
bits ^= bits >> d;
|
| 553 |
diff ^= diff >> d;
|
| 554 |
}
|
| 555 |
return (((index ^ y ^ nBits) & 1) == (bits < (bits^diff)))? -1: 1;
|
| 556 |
}
|
| 557 |
index ^= bits;
|
| 558 |
reflection ^= one << rotation;
|
| 559 |
adjust_rotation(rotation,nDims,bits);
|
| 560 |
bits = reflection;
|
| 561 |
}
|
| 562 |
return 0;
|
| 563 |
}
|
| 564 |
|
| 565 |
int
|
| 566 |
hilbert_cmp(unsigned nDims, unsigned nBytes, unsigned nBits,
|
| 567 |
void const* c1, void const* c2)
|
| 568 |
{
|
| 569 |
bitmask_t const one = 1;
|
| 570 |
bitmask_t bits = one << (nDims-1);
|
| 571 |
return hilbert_cmp_work(nDims, nBytes, nBits, 0, nBits,
|
| 572 |
(char const*)c1, (char const*)c2,
|
| 573 |
0, bits, bits, getIntBits);
|
| 574 |
}
|
| 575 |
|
| 576 |
int
|
| 577 |
hilbert_ieee_cmp(unsigned nDims, double const* c1, double const* c2)
|
| 578 |
{
|
| 579 |
unsigned rotation, max;
|
| 580 |
bitmask_t bits, index;
|
| 581 |
if (getIEEESignBits(nDims, c1) != getIEEESignBits(nDims, c2))
|
| 582 |
max = 2047;
|
| 583 |
else
|
| 584 |
{
|
| 585 |
unsigned max1 = getIEEEexptMax(nDims, c1);
|
| 586 |
unsigned max2 = getIEEEexptMax(nDims, c2);
|
| 587 |
max = (max1 > max2)? max1: max2;
|
| 588 |
}
|
| 589 |
|
| 590 |
getIEEEinitValues(c1, max+53, nDims, &rotation, &bits, &index);
|
| 591 |
return hilbert_cmp_work(nDims, 8, 64, max, max+53,
|
| 592 |
(char const*)c1, (char const*)c2,
|
| 593 |
rotation, bits, index, getIEEEBits);
|
| 594 |
}
|
| 595 |
|
| 596 |
/*****************************************************************
|
| 597 |
* hilbert_box_vtx
|
| 598 |
*
|
| 599 |
* Determine the first or last vertex of a box to lie on a Hilbert curve
|
| 600 |
* Inputs:
|
| 601 |
* nDims: Number of coordinates.
|
| 602 |
* nBytes: Number of bytes/coordinate.
|
| 603 |
* nBits: Number of bits/coordinate.
|
| 604 |
* findMin: Is it the least vertex sought?
|
| 605 |
* coord1: Array of nDims nBytes-byte coordinates - one corner of box
|
| 606 |
* coord2: Array of nDims nBytes-byte coordinates - opposite corner
|
| 607 |
* Output:
|
| 608 |
* c1 and c2 modified to refer to selected corner
|
| 609 |
* value returned is log2 of size of largest power-of-two-aligned box that
|
| 610 |
* contains the selected corner and no other corners
|
| 611 |
* Assumptions:
|
| 612 |
* nBits <= (sizeof bitmask_t) * (bits_per_byte)
|
| 613 |
*/
|
| 614 |
|
| 615 |
|
| 616 |
static unsigned
|
| 617 |
hilbert_box_vtx_work(unsigned nDims, unsigned nBytes, unsigned nBits,
|
| 618 |
int findMin,
|
| 619 |
unsigned max, unsigned y,
|
| 620 |
char* c1, char* c2,
|
| 621 |
unsigned rotation,
|
| 622 |
bitmask_t bits,
|
| 623 |
bitmask_t index,
|
| 624 |
BitReader getBits)
|
| 625 |
{
|
| 626 |
bitmask_t const one = 1;
|
| 627 |
bitmask_t const ndOnes = ones(bitmask_t,nDims);
|
| 628 |
bitmask_t const nd1Ones= ndOnes >> 1;
|
| 629 |
bitmask_t bitsFolded = 0;
|
| 630 |
|
| 631 |
while (y--)
|
| 632 |
{
|
| 633 |
bitmask_t reflection = getBits(nDims, nBytes, c1, y);
|
| 634 |
bitmask_t diff = reflection ^ getBits(nDims, nBytes, c2, y);
|
| 635 |
if (diff)
|
| 636 |
{
|
| 637 |
unsigned d;
|
| 638 |
bitmask_t smear = rotateRight(diff, rotation, nDims) >> 1;
|
| 639 |
bitmask_t digit = rotateRight(bits ^ reflection, rotation, nDims);
|
| 640 |
for (d = 1; d < nDims; d *= 2)
|
| 641 |
{
|
| 642 |
index ^= index >> d;
|
| 643 |
digit ^= (digit >> d) &~ smear;
|
| 644 |
smear |= smear >> d;
|
| 645 |
}
|
| 646 |
index &= 1;
|
| 647 |
if ((index ^ y ^ findMin) & 1)
|
| 648 |
digit ^= smear+1;
|
| 649 |
digit = rotateLeft(digit, rotation, nDims) & diff;
|
| 650 |
reflection ^= digit;
|
| 651 |
|
| 652 |
for (d = 0; d < nDims; ++d)
|
| 653 |
if (rdbit(diff, d))
|
| 654 |
{
|
| 655 |
int way = rdbit(digit, d);
|
| 656 |
char* target = d*nBytes + (way? c1: c2);
|
| 657 |
char* const source = 2*d*nBytes + c1 - target + c2;
|
| 658 |
memcpy(target, source, nBytes);
|
| 659 |
}
|
| 660 |
|
| 661 |
bitsFolded |= diff;
|
| 662 |
if (bitsFolded == ndOnes)
|
| 663 |
return y;
|
| 664 |
}
|
| 665 |
|
| 666 |
bits ^= reflection;
|
| 667 |
bits = rotateRight(bits, rotation, nDims);
|
| 668 |
index ^= bits;
|
| 669 |
reflection ^= one << rotation;
|
| 670 |
adjust_rotation(rotation,nDims,bits);
|
| 671 |
bits = reflection;
|
| 672 |
}
|
| 673 |
return y;
|
| 674 |
}
|
| 675 |
|
| 676 |
unsigned
|
| 677 |
hilbert_box_vtx(unsigned nDims, unsigned nBytes, unsigned nBits,
|
| 678 |
int findMin, void* c1, void* c2)
|
| 679 |
{
|
| 680 |
bitmask_t const one = 1;
|
| 681 |
bitmask_t bits = one << (nDims-1);
|
| 682 |
return hilbert_box_vtx_work(nDims, nBytes, nBits, findMin,
|
| 683 |
0, nBits, (char*)c1, (char*)c2,
|
| 684 |
0, bits, bits, getIntBits);
|
| 685 |
}
|
| 686 |
|
| 687 |
unsigned
|
| 688 |
hilbert_ieee_box_vtx(unsigned nDims,
|
| 689 |
int findMin, double* c1, double* c2)
|
| 690 |
{
|
| 691 |
unsigned rotation, max;
|
| 692 |
bitmask_t bits, index;
|
| 693 |
if (getIEEESignBits(nDims, c1) != getIEEESignBits(nDims, c2))
|
| 694 |
max = 2047;
|
| 695 |
else
|
| 696 |
{
|
| 697 |
unsigned max1 = getIEEEexptMax(nDims, c1);
|
| 698 |
unsigned max2 = getIEEEexptMax(nDims, c2);
|
| 699 |
max = (max1 > max2)? max1: max2;
|
| 700 |
}
|
| 701 |
|
| 702 |
getIEEEinitValues(c1, max+53, nDims, &rotation, &bits, &index);
|
| 703 |
|
| 704 |
return hilbert_box_vtx_work(nDims, 8, 64, findMin,
|
| 705 |
max, max+53, (char *)c1, (char *)c2,
|
| 706 |
rotation, bits, index, getIEEEBits);
|
| 707 |
}
|
| 708 |
|
| 709 |
/*****************************************************************
|
| 710 |
* hilbert_box_pt
|
| 711 |
*
|
| 712 |
* Determine the first or last point of a box to lie on a Hilbert curve
|
| 713 |
* Inputs:
|
| 714 |
* nDims: Number of coordinates.
|
| 715 |
* nBytes: Number of bytes/coordinate.
|
| 716 |
* nBits: Number of bits/coordinate.
|
| 717 |
* findMin: Is it the least vertex sought?
|
| 718 |
* coord1: Array of nDims nBytes-byte coordinates - one corner of box
|
| 719 |
* coord2: Array of nDims nBytes-byte coordinates - opposite corner
|
| 720 |
* Output:
|
| 721 |
* c1 and c2 modified to refer to least point
|
| 722 |
* Assumptions:
|
| 723 |
* nBits <= (sizeof bitmask_t) * (bits_per_byte)
|
| 724 |
*/
|
| 725 |
unsigned
|
| 726 |
hilbert_box_pt_work(unsigned nDims, unsigned nBytes, unsigned nBits,
|
| 727 |
int findMin,
|
| 728 |
unsigned max, unsigned y,
|
| 729 |
char* c1, char* c2,
|
| 730 |
unsigned rotation,
|
| 731 |
bitmask_t bits,
|
| 732 |
bitmask_t index,
|
| 733 |
BitReader getBits,
|
| 734 |
BitWriter propogateBits)
|
| 735 |
{
|
| 736 |
bitmask_t const one = 1;
|
| 737 |
bitmask_t const nd1Ones = ones(bitmask_t,nDims) >> 1;
|
| 738 |
bitmask_t fold1 = 0, fold2 = 0;
|
| 739 |
unsigned smearSum = 0;
|
| 740 |
|
| 741 |
while (y-- > max)
|
| 742 |
{
|
| 743 |
bitmask_t reflection = getBits(nDims, nBytes, c1, y);
|
| 744 |
bitmask_t diff = reflection ^ getBits(nDims, nBytes, c2, y);
|
| 745 |
if (diff)
|
| 746 |
{
|
| 747 |
bitmask_t smear = rotateRight(diff, rotation, nDims) >> 1;
|
| 748 |
bitmask_t digit = rotateRight(bits ^ reflection, rotation, nDims);
|
| 749 |
unsigned d;
|
| 750 |
for (d = 1; d < nDims; d *= 2)
|
| 751 |
{
|
| 752 |
index ^= index >> d;
|
| 753 |
digit ^= (digit >> d) &~ smear;
|
| 754 |
smear |= smear >> d;
|
| 755 |
}
|
| 756 |
smearSum += smear;
|
| 757 |
index &= 1;
|
| 758 |
if ((index ^ y ^ findMin) & 1)
|
| 759 |
digit ^= smear+1;
|
| 760 |
digit = rotateLeft(digit, rotation, nDims) & diff;
|
| 761 |
reflection ^= digit;
|
| 762 |
|
| 763 |
for (d = 0; d < nDims; ++d)
|
| 764 |
if (rdbit(diff, d))
|
| 765 |
{
|
| 766 |
int way = rdbit(digit, d);
|
| 767 |
char* c = way? c1: c2;
|
| 768 |
bitmask_t fold = way? fold1: fold2;
|
| 769 |
propogateBits(d, nBytes, c, y, rdbit(fold, d));
|
| 770 |
}
|
| 771 |
diff ^= digit;
|
| 772 |
fold1 |= digit;
|
| 773 |
fold2 |= diff;
|
| 774 |
}
|
| 775 |
|
| 776 |
bits ^= reflection;
|
| 777 |
bits = rotateRight(bits, rotation, nDims);
|
| 778 |
index ^= bits;
|
| 779 |
reflection ^= one << rotation;
|
| 780 |
adjust_rotation(rotation,nDims,bits);
|
| 781 |
bits = reflection;
|
| 782 |
}
|
| 783 |
return smearSum;
|
| 784 |
}
|
| 785 |
|
| 786 |
unsigned
|
| 787 |
hilbert_box_pt(unsigned nDims, unsigned nBytes, unsigned nBits,
|
| 788 |
int findMin, void* c1, void* c2)
|
| 789 |
{
|
| 790 |
bitmask_t const one = 1;
|
| 791 |
bitmask_t bits = one << (nDims-1);
|
| 792 |
return hilbert_box_pt_work(nDims, nBytes, nBits, findMin,
|
| 793 |
0, nBits, (char*)c1, (char*)c2,
|
| 794 |
0, bits, bits,
|
| 795 |
getIntBits, propogateIntBits);
|
| 796 |
}
|
| 797 |
|
| 798 |
unsigned
|
| 799 |
hilbert_ieee_box_pt(unsigned nDims,
|
| 800 |
int findMin, double* c1, double* c2)
|
| 801 |
{
|
| 802 |
unsigned rotation, max;
|
| 803 |
bitmask_t bits, index;
|
| 804 |
bitmask_t c1Signs = getIEEESignBits(nDims, c1);
|
| 805 |
bitmask_t c2Signs = getIEEESignBits(nDims, c2);
|
| 806 |
if (c1Signs != c2Signs)
|
| 807 |
{
|
| 808 |
rotation = 0;
|
| 809 |
bits = (bitmask_t)1 << (nDims-1);
|
| 810 |
index = 1;
|
| 811 |
hilbert_box_pt_work(nDims, 8, 64, findMin,
|
| 812 |
IEEErepBits-1, IEEErepBits, (char *)c1, (char *)c2,
|
| 813 |
rotation, bits, index,
|
| 814 |
getIEEEBits, propogateIEEEBits);
|
| 815 |
}
|
| 816 |
|
| 817 |
/* having put everything in the same orthant, start */
|
| 818 |
{
|
| 819 |
unsigned max1 = getIEEEexptMax(nDims, c1);
|
| 820 |
unsigned max2 = getIEEEexptMax(nDims, c2);
|
| 821 |
max = (max1 > max2)? max1: max2;
|
| 822 |
}
|
| 823 |
|
| 824 |
getIEEEinitValues(c1, max+53, nDims, &rotation, &bits, &index);
|
| 825 |
|
| 826 |
return hilbert_box_pt_work(nDims, 8, 64, findMin,
|
| 827 |
max, max+53, (char *)c1, (char *)c2,
|
| 828 |
rotation, bits, index,
|
| 829 |
getIEEEBits, propogateIEEEBits);
|
| 830 |
}
|
| 831 |
|
| 832 |
/*****************************************************************
|
| 833 |
* hilbert_nextinbox
|
| 834 |
*
|
| 835 |
* Determine the first point of a box after or before a given point to lie on
|
| 836 |
* a Hilbert curve
|
| 837 |
* Inputs:
|
| 838 |
* nDims: Number of coordinates.
|
| 839 |
* nBytes: Number of bytes/coordinate.
|
| 840 |
* nBits: Number of bits/coordinate.
|
| 841 |
* findPrev: Is it a previous point that you want?
|
| 842 |
* coord1: Array of nDims nBytes-byte coordinates - one corner of box
|
| 843 |
* coord2: Array of nDims nBytes-byte coordinates - opposite corner
|
| 844 |
* point: Array of nDims nBytes-byte coordinates - lower bound on point returned
|
| 845 |
*
|
| 846 |
* Output:
|
| 847 |
if returns 1:
|
| 848 |
* c1 and c2 modified to refer to least point after "point" in box
|
| 849 |
else returns 0:
|
| 850 |
arguments unchanged; "point" is beyond the last point of the box
|
| 851 |
* Assumptions:
|
| 852 |
* nBits <= (sizeof bitmask_t) * (bits_per_byte)
|
| 853 |
*/
|
| 854 |
int
|
| 855 |
hilbert_nextinbox(unsigned nDims, unsigned nBytes, unsigned nBits,
|
| 856 |
int findPrev, void* c1V, void* c2V, void const* ptV)
|
| 857 |
{
|
| 858 |
bitmask_t const one = 1;
|
| 859 |
unsigned y = nBits;
|
| 860 |
bitmask_t const ndOnes = ones(bitmask_t,nDims);
|
| 861 |
bitmask_t const nd1Ones = ndOnes >> 1;
|
| 862 |
unsigned rotation = 0;
|
| 863 |
bitmask_t bits = 0;
|
| 864 |
bitmask_t index = 0;
|
| 865 |
bitmask_t fold1 = 0, fold2 = 0;
|
| 866 |
bitmask_t valu1 = 0, valu2 = 0;
|
| 867 |
unsigned p_y;
|
| 868 |
bitmask_t p_separator = 0, p_firstSeparator;
|
| 869 |
bitmask_t p_cornerdiff, p_reflection;
|
| 870 |
bitmask_t p_fold1, p_fold2, p_valu1, p_valu2;
|
| 871 |
|
| 872 |
char* c1 = (char*)c1V;
|
| 873 |
char* c2 = (char*)c2V;
|
| 874 |
char const* pt = (const char*)ptV;
|
| 875 |
|
| 876 |
while (y-- > 0)
|
| 877 |
{
|
| 878 |
bitmask_t reflection = getIntBits(nDims, nBytes, pt, y);
|
| 879 |
bitmask_t diff = reflection ^ /* planes that separate box and point */
|
| 880 |
((getIntBits(nDims, nBytes, c1, y) &~ fold1) | valu1);
|
| 881 |
|
| 882 |
if (diff)
|
| 883 |
/* some coordinate planes separate point from box or
|
| 884 |
dividing box or both; smear the bits of diff to reflect that
|
| 885 |
after the first diff dimension, they might as well all be
|
| 886 |
diffing; adjust the diff to reflect the fact that diffed
|
| 887 |
dimensions don't matter. */
|
| 888 |
{
|
| 889 |
/* compute (the complement of) a "digit" in the integer index of this
|
| 890 |
point */
|
| 891 |
bitmask_t cornerdiff = (diff ^ reflection) ^ /* separate box crnrs */
|
| 892 |
((getIntBits(nDims, nBytes, c2, y) &~ fold2) | valu2);
|
| 893 |
bitmask_t separator = diff & ~cornerdiff;
|
| 894 |
/* eventually, the most significant separating cutting plane */
|
| 895 |
bitmask_t firstSeparator;
|
| 896 |
/* bits less significant than the msb of separator are irrelevant;
|
| 897 |
for convenience, call them all separators too */
|
| 898 |
bitmask_t rotSep = rotateRight(separator, rotation, nDims);
|
| 899 |
/* compute the (complement of the) digit of the hilbert code
|
| 900 |
assoc with point */
|
| 901 |
bitmask_t digit = rotateRight(bits ^ reflection, rotation, nDims);
|
| 902 |
unsigned d;
|
| 903 |
for (d = 1; d < nDims; d *= 2)
|
| 904 |
{
|
| 905 |
index ^= index >> d;
|
| 906 |
digit ^= digit >> d;
|
| 907 |
rotSep |= rotSep >> d;
|
| 908 |
}
|
| 909 |
index &= 1;
|
| 910 |
digit &= rotSep;
|
| 911 |
if ((index ^ y ^ findPrev) & 1)
|
| 912 |
digit ^= rotSep;
|
| 913 |
|
| 914 |
separator = rotateLeft(rotSep, rotation, nDims);
|
| 915 |
rotSep -= rotSep >> 1;
|
| 916 |
firstSeparator = rotateLeft(rotSep, rotation, nDims);
|
| 917 |
/* forget about all the planes that split the box, except those that
|
| 918 |
are more significant than the most significant separator. */
|
| 919 |
cornerdiff &= ~separator;
|
| 920 |
|
| 921 |
if (cornerdiff && digit)
|
| 922 |
/* some coordinate planes divide the box. Call the part of the
|
| 923 |
box in the same orthant as the point "here" and the part of
|
| 924 |
the box in the next (or previous) orthant "there". Remember
|
| 925 |
what the "there" orthant of the box looks like in case it
|
| 926 |
turns out that the curve doesn't reenter the box "here" after
|
| 927 |
(before) passing thru point. Continue working with the
|
| 928 |
"here" part. If there is no "there" there, skip it */
|
| 929 |
{
|
| 930 |
p_firstSeparator = digit & -digit;
|
| 931 |
p_separator = 2*p_firstSeparator-1;
|
| 932 |
p_separator = rotateLeft(p_separator, rotation, nDims);
|
| 933 |
p_firstSeparator = rotateLeft(p_firstSeparator, rotation, nDims);
|
| 934 |
p_cornerdiff = cornerdiff &~ (p_separator ^ p_firstSeparator);
|
| 935 |
p_y = y;
|
| 936 |
p_reflection = reflection ^ p_firstSeparator;
|
| 937 |
p_fold1 = fold1;
|
| 938 |
p_fold2 = fold2;
|
| 939 |
p_valu1 = valu1;
|
| 940 |
p_valu2 = valu2;
|
| 941 |
}
|
| 942 |
|
| 943 |
if (digit < rotSep)
|
| 944 |
|
| 945 |
/* use next box */
|
| 946 |
{
|
| 947 |
if (!p_separator) return 0; /* no next point */
|
| 948 |
separator = p_separator;
|
| 949 |
firstSeparator = p_firstSeparator;
|
| 950 |
y = p_y;
|
| 951 |
cornerdiff = p_cornerdiff;
|
| 952 |
reflection = p_reflection;
|
| 953 |
fold1 = p_fold1;
|
| 954 |
fold2 = p_fold2;
|
| 955 |
valu1 = p_valu1;
|
| 956 |
valu2 = p_valu2;
|
| 957 |
}
|
| 958 |
|
| 959 |
if (cornerdiff)
|
| 960 |
{
|
| 961 |
/* reduce currbox */
|
| 962 |
bitmask_t corner = diff & cornerdiff;
|
| 963 |
cornerdiff ^= corner;
|
| 964 |
fold1 |= corner;
|
| 965 |
fold2 |= cornerdiff;
|
| 966 |
valu1 |= ~reflection & corner;
|
| 967 |
valu2 |= ~reflection & cornerdiff;
|
| 968 |
}
|
| 969 |
|
| 970 |
separator ^= firstSeparator;
|
| 971 |
if (firstSeparator)
|
| 972 |
/* we have completely separated the point from a part of the box
|
| 973 |
ahead of it on the curve; almost done */
|
| 974 |
{
|
| 975 |
unsigned byteId = whichByte(nBytes,y);
|
| 976 |
bitmask_t bthbit = one << y%8;
|
| 977 |
for (d = 0; d < nDims; ++d)
|
| 978 |
{
|
| 979 |
char lo1, lo2;
|
| 980 |
char* cc1 = &c1[d*nBytes];
|
| 981 |
char* cc2 = &c2[d*nBytes];
|
| 982 |
char const* pnt = &pt[d*nBytes];
|
| 983 |
char hibits = -bthbit;
|
| 984 |
char hipart = pnt[byteId] & hibits;
|
| 985 |
memcpy(cc1, pnt, byteId);
|
| 986 |
memcpy(cc2, pnt, byteId);
|
| 987 |
|
| 988 |
if (rdbit(separator, d))
|
| 989 |
hibits ^= bthbit;
|
| 990 |
if (rdbit(firstSeparator, d))
|
| 991 |
hipart ^= bthbit;
|
| 992 |
|
| 993 |
if (rdbit(fold1, d))
|
| 994 |
{
|
| 995 |
lo1 = -rdbit(valu1, d);
|
| 996 |
setBytes(cc1,byteId,nBytes,lo1);
|
| 997 |
}
|
| 998 |
else lo1 = cc1[byteId];
|
| 999 |
cc1[byteId] = hipart | (lo1 &~ hibits);
|
| 1000 |
|
| 1001 |
if (rdbit(fold2, d))
|
| 1002 |
{
|
| 1003 |
lo2 = -rdbit(valu2, d);
|
| 1004 |
setBytes(cc2,byteId,nBytes,lo2);
|
| 1005 |
}
|
| 1006 |
else lo2 = cc2[byteId];
|
| 1007 |
cc2[byteId] = hipart | (lo2 &~ hibits);
|
| 1008 |
}
|
| 1009 |
|
| 1010 |
hilbert_box_pt(nDims, nBytes, nBits, !findPrev, c1V, c2V);
|
| 1011 |
return 1;
|
| 1012 |
}
|
| 1013 |
}
|
| 1014 |
|
| 1015 |
bits ^= reflection;
|
| 1016 |
bits = rotateRight(bits, rotation, nDims);
|
| 1017 |
index ^= bits;
|
| 1018 |
reflection ^= one << rotation;
|
| 1019 |
adjust_rotation(rotation,nDims,bits);
|
| 1020 |
bits = reflection;
|
| 1021 |
}
|
| 1022 |
|
| 1023 |
/* point is in box */
|
| 1024 |
{
|
| 1025 |
unsigned d;
|
| 1026 |
for (d = 0; d < nDims; ++d)
|
| 1027 |
((char*)c1)[d] = ((char*)c2)[d] = ((char*)pt)[d];
|
| 1028 |
}
|
| 1029 |
return 1;
|
| 1030 |
}
|
| 1031 |
|
| 1032 |
|
| 1033 |
|
| 1034 |
/*****************************************************************
|
| 1035 |
* hilbert_incr
|
| 1036 |
*
|
| 1037 |
* Advance from one point to its successor on a Hilbert curve
|
| 1038 |
* Inputs:
|
| 1039 |
* nDims: Number of coordinates.
|
| 1040 |
* nBits: Number of bits/coordinate.
|
| 1041 |
* coord: Array of nDims nBits-bit coordinates.
|
| 1042 |
* Output:
|
| 1043 |
* coord: Next point on Hilbert curve
|
| 1044 |
* Assumptions:
|
| 1045 |
* nBits <= (sizeof bitmask_t) * (bits_per_byte)
|
| 1046 |
*/
|
| 1047 |
|
| 1048 |
void
|
| 1049 |
hilbert_incr(unsigned nDims, unsigned nBits, bitmask_t coord[])
|
| 1050 |
{
|
| 1051 |
bitmask_t const one = 1;
|
| 1052 |
bitmask_t const ndOnes = ones(bitmask_t,nDims);
|
| 1053 |
bitmask_t const nd1Ones= ndOnes >> 1;
|
| 1054 |
unsigned b, d;
|
| 1055 |
unsigned rotation = 0;
|
| 1056 |
bitmask_t reflection = 0;
|
| 1057 |
bitmask_t index = 0;
|
| 1058 |
unsigned rb = nBits-1;
|
| 1059 |
bitmask_t rd = ndOnes;
|
| 1060 |
|
| 1061 |
for (b = nBits; b--;)
|
| 1062 |
{
|
| 1063 |
bitmask_t bits = reflection;
|
| 1064 |
reflection = 0;
|
| 1065 |
for (d = 0; d < nDims; ++d)
|
| 1066 |
reflection |= rdbit(coord[d], b) << d;
|
| 1067 |
bits ^= reflection;
|
| 1068 |
bits = rotateRight(bits, rotation, nDims);
|
| 1069 |
index ^= bits;
|
| 1070 |
for (d = 1; d < nDims; d *= 2)
|
| 1071 |
index ^= index >> d;
|
| 1072 |
if (index++ != ndOnes)
|
| 1073 |
{
|
| 1074 |
rb = b;
|
| 1075 |
rd = index & -index;
|
| 1076 |
rd = rotateLeft(rd, rotation, nDims);
|
| 1077 |
|
| 1078 |
}
|
| 1079 |
index &= 1;
|
| 1080 |
index <<= nDims-1;
|
| 1081 |
|
| 1082 |
reflection ^= one << rotation;
|
| 1083 |
adjust_rotation(rotation,nDims,bits);
|
| 1084 |
}
|
| 1085 |
for (d = 0; !rdbit(rd, d); ++d) {}
|
| 1086 |
coord[d] ^= (2 << rb) - 1;
|
| 1087 |
}
|
| 1088 |
|
| 1089 |
|
| 1090 |
/* LICENSE
|
| 1091 |
*
|
| 1092 |
* This software is copyrighted by Rice University. It may be freely copied,
|
| 1093 |
* modified, and redistributed, provided that the copyright notice is
|
| 1094 |
* preserved on all copies.
|
| 1095 |
*
|
| 1096 |
* There is no warranty or other guarantee of fitness for this software,
|
| 1097 |
* it is provided solely "as is". Bug reports or fixes may be sent
|
| 1098 |
* to the author, who may or may not act on them as he desires.
|
| 1099 |
*
|
| 1100 |
* You may include this software in a program or other software product,
|
| 1101 |
* but must display the notice:
|
| 1102 |
*
|
| 1103 |
* Hilbert Curve implementation copyright 1998, Rice University
|
| 1104 |
*
|
| 1105 |
* in any place where the end-user would see your own copyright.
|
| 1106 |
*
|
| 1107 |
* If you modify this software, you should include a notice giving the
|
| 1108 |
* name of the person performing the modification, the date of modification,
|
| 1109 |
* and the reason for such modification.
|
| 1110 |
*/
|
| 1111 |
|
| 1112 |
|
| 1113 |
|
| 1114 |
/* Revision history:
|
| 1115 |
|
| 1116 |
July 1998: Initial release
|
| 1117 |
|
| 1118 |
Sept 1998: Second release
|
| 1119 |
|
| 1120 |
Dec 1998: Fixed bug in hilbert_c2i that allowed a shift by number of bits in
|
| 1121 |
bitmask to vaporize index, in last bit of the function. Implemented
|
| 1122 |
hilbert_incr.
|
| 1123 |
|
| 1124 |
August 1999: Added argument to hilbert_nextinbox so that you can, optionally,
|
| 1125 |
find the previous point along the curve to intersect the box, rather than the
|
| 1126 |
next point.
|
| 1127 |
|
| 1128 |
Nov 1999: Defined fast bit-transpose function (fast, at least, if the number
|
| 1129 |
of bits is large), and reimplemented i2c and c2i in terms of it. Collapsed
|
| 1130 |
loops in hilbert_cmp, with the intention of reusing the cmp code to compare
|
| 1131 |
more general bitstreams.
|
| 1132 |
|
| 1133 |
Feb 2000: Implemented almost all the floating point versions of cmp, etc, so
|
| 1134 |
that coordinates expressed in terms of double-precision IEEE floating point
|
| 1135 |
can be ordered. Still have to do next-in-box, though.
|
| 1136 |
|
| 1137 |
Oct 2001: Learned that some arbitrary coding choices caused some routines
|
| 1138 |
to fail in one dimension, and changed those choices.
|
| 1139 |
|
| 1140 |
version 2001-10-20-05:34
|
| 1141 |
|
| 1142 |
*/
|
| 1143 |
|
| 1144 |
/* What remains is test code that won't be compiled unless you define the
|
| 1145 |
TEST_HILBERT preprocessor symbol */
|
| 1146 |
|
| 1147 |
#ifdef TEST_HILBERT
|
| 1148 |
#include <stdio.h>
|
| 1149 |
#define abs(x) (((x)>=0)?(x):(-(x)))
|
| 1150 |
|
| 1151 |
int main()
|
| 1152 |
{
|
| 1153 |
#define maxDim (8*sizeof(bitmask_t))
|
| 1154 |
bitmask_t coord[maxDim], coordPrev[maxDim];
|
| 1155 |
unsigned nDims, nBits, nPrints, orderCheck, i;
|
| 1156 |
bitmask_t r, r1;
|
| 1157 |
|
| 1158 |
for (;;)
|
| 1159 |
{
|
| 1160 |
printf( "Enter nDims, nBits, nPrints, orderCheck: " );
|
| 1161 |
scanf( "%d", &nDims);
|
| 1162 |
if ( nDims == 0 )
|
| 1163 |
break;
|
| 1164 |
scanf( "%d%d%d", &nBits, &nPrints, &orderCheck);
|
| 1165 |
while ( (i = getchar()) != '\n' && i != EOF )
|
| 1166 |
;
|
| 1167 |
if ( i == EOF )
|
| 1168 |
break;
|
| 1169 |
|
| 1170 |
if (nDims*nBits > 8*sizeof(r))
|
| 1171 |
{
|
| 1172 |
printf("Product of nDims and nBits not exceed %d.\n", 8*sizeof(r));
|
| 1173 |
break;
|
| 1174 |
}
|
| 1175 |
|
| 1176 |
if (nBits == 0)
|
| 1177 |
{
|
| 1178 |
printf("nBits must be positive.\n");
|
| 1179 |
break;
|
| 1180 |
}
|
| 1181 |
|
| 1182 |
if (nPrints > (1ULL << (nDims*nBits)))
|
| 1183 |
nPrints = 1ULL << (nDims*nBits);
|
| 1184 |
|
| 1185 |
for (r = 0; r < nPrints; ++r)
|
| 1186 |
{
|
| 1187 |
bitmask_t coord1[maxDim];
|
| 1188 |
int miscount = 0;
|
| 1189 |
hilbert_i2c( nDims, nBits, r, coord );
|
| 1190 |
printf("%d: ", (unsigned)r);
|
| 1191 |
for (i = 0; i < nDims; ++i)
|
| 1192 |
{
|
| 1193 |
int diff = (int)(coord[i] - coordPrev[i]);
|
| 1194 |
miscount += abs(diff);
|
| 1195 |
coordPrev[i] = coord[i];
|
| 1196 |
printf(" %d", (unsigned)coord[i]);
|
| 1197 |
}
|
| 1198 |
if (r > 0 && miscount != 1)
|
| 1199 |
printf(".....error");
|
| 1200 |
printf("\n");
|
| 1201 |
r1 = hilbert_c2i( nDims, nBits, coord );
|
| 1202 |
if ( r != r1 )
|
| 1203 |
printf( "r = 0x%x; r1 = 0x%x\n", (unsigned)r, (unsigned)r1);
|
| 1204 |
for (i = 0; i < nDims; ++i)
|
| 1205 |
coord[i] = coordPrev[i];
|
| 1206 |
|
| 1207 |
if (! orderCheck)
|
| 1208 |
continue;
|
| 1209 |
|
| 1210 |
for (r1 = 0; r1 < r; ++r1 )
|
| 1211 |
{
|
| 1212 |
unsigned ans;
|
| 1213 |
hilbert_i2c( nDims, nBits, r1, coord1 );
|
| 1214 |
ans = hilbert_cmp( nDims, sizeof(coord[0]), nBits, coord, coord1);
|
| 1215 |
if (ans != 1)
|
| 1216 |
{
|
| 1217 |
int width = (nDims*nBits + 3) / 4;
|
| 1218 |
printf( "cmp r = 0x%0*x; r1 = 0x%0*x, ans = %2d\n",
|
| 1219 |
width, (unsigned)r,
|
| 1220 |
width, (unsigned)r1, ans );
|
| 1221 |
}
|
| 1222 |
}
|
| 1223 |
hilbert_i2c( nDims, nBits, r1, coord1 );
|
| 1224 |
if (hilbert_cmp( nDims, sizeof(coord[0]), nBits, coord, coord1) != 0)
|
| 1225 |
printf( "cmp r = 0x%0*x; r1 = 0x%0*x\n", (nDims*nBits+3)/4, (unsigned)r,
|
| 1226 |
(nDims*nBits+3)/4, (unsigned)r1 );
|
| 1227 |
|
| 1228 |
}
|
| 1229 |
}
|
| 1230 |
return 0;
|
| 1231 |
}
|
| 1232 |
|
| 1233 |
#endif
|
| 1234 |
|
| 1235 |
#ifdef TEST_IEEE
|
| 1236 |
#include <stdio.h>
|
| 1237 |
#include <stdlib.h>
|
| 1238 |
#include <math.h>
|
| 1239 |
|
| 1240 |
int cmp(const void* xv, const void* yv)
|
| 1241 |
{
|
| 1242 |
double const* x = xv;
|
| 1243 |
double const* y = yv;
|
| 1244 |
/* return hilbert_cmp(2, 8, 64, x, y); */
|
| 1245 |
return hilbert_ieee_cmp(2, x, y);
|
| 1246 |
}
|
| 1247 |
|
| 1248 |
int main()
|
| 1249 |
{
|
| 1250 |
double *a;
|
| 1251 |
unsigned i;
|
| 1252 |
unsigned n;
|
| 1253 |
printf("How many points? ");
|
| 1254 |
scanf("%d", &n);
|
| 1255 |
a = (double*) malloc(2*n*sizeof(double));
|
| 1256 |
for (i = 0; i < n; ++i)
|
| 1257 |
a[2*i] = drand48()-0.5, a[2*i+1] = drand48()-0.5;
|
| 1258 |
|
| 1259 |
qsort(a, n, 2*sizeof(double), cmp);
|
| 1260 |
|
| 1261 |
for (i = 0; i < n; ++i)
|
| 1262 |
printf("%8g %8g\n", a[2*i], a[2*i+1]);
|
| 1263 |
free(a);
|
| 1264 |
return 0;
|
| 1265 |
}
|
| 1266 |
|
| 1267 |
#endif
|
| 1268 |
|
| 1269 |
#ifdef TEST_CMP
|
| 1270 |
#include <stdio.h>
|
| 1271 |
|
| 1272 |
#define maxDim (8*sizeof(bitmask_t))
|
| 1273 |
int main()
|
| 1274 |
{
|
| 1275 |
double coord[maxDim];
|
| 1276 |
unsigned nDims, i, k;
|
| 1277 |
|
| 1278 |
printf( "Enter nDims: " );
|
| 1279 |
scanf( "%d", &nDims);
|
| 1280 |
if ( nDims == 0 )
|
| 1281 |
return 0;
|
| 1282 |
while ( (i = getchar()) != '\n' && i != EOF )
|
| 1283 |
;
|
| 1284 |
if ( i == EOF )
|
| 1285 |
return 0;
|
| 1286 |
|
| 1287 |
for (k = 0; k < (1<<nDims); ++k)
|
| 1288 |
{
|
| 1289 |
printf("Orth %2d\n", k);
|
| 1290 |
for (i = 0; i < nDims; ++i)
|
| 1291 |
coord[i] = ((k>>i)&1)? -1.: 1.;
|
| 1292 |
|
| 1293 |
|
| 1294 |
hilbert_ieee_cmp( nDims, coord, coord);
|
| 1295 |
}
|
| 1296 |
return 0;
|
| 1297 |
}
|
| 1298 |
|
| 1299 |
#endif
|
| 1300 |
|
| 1301 |
#ifdef TEST_VTX
|
| 1302 |
#include <stdio.h>
|
| 1303 |
#include <stdlib.h>
|
| 1304 |
|
| 1305 |
#define maxDim (8*sizeof(bitmask_t))
|
| 1306 |
|
| 1307 |
unsigned g_nDims;
|
| 1308 |
|
| 1309 |
int cmp(void const* c1p, void const* c2p)
|
| 1310 |
{
|
| 1311 |
return hilbert_cmp(g_nDims, sizeof(unsigned), 8*sizeof(unsigned), c1p, c2p);
|
| 1312 |
}
|
| 1313 |
|
| 1314 |
int main()
|
| 1315 |
{
|
| 1316 |
unsigned corner0[maxDim], corner1[maxDim];
|
| 1317 |
unsigned cornerlo[maxDim], cornerhi[maxDim], work[maxDim];
|
| 1318 |
typedef unsigned array_t[maxDim];
|
| 1319 |
array_t* array;
|
| 1320 |
|
| 1321 |
unsigned nDims, i, k;
|
| 1322 |
|
| 1323 |
printf( "Enter nDims: " );
|
| 1324 |
scanf( "%d", &nDims);
|
| 1325 |
if ( nDims == 0 )
|
| 1326 |
return 0;
|
| 1327 |
while ( (i = getchar()) != '\n' && i != EOF )
|
| 1328 |
;
|
| 1329 |
if ( i == EOF )
|
| 1330 |
return 0;
|
| 1331 |
|
| 1332 |
printf("Enter one corner (%d coordinates): ", nDims);
|
| 1333 |
for (k = 0; k < nDims; ++k)
|
| 1334 |
scanf("%d", &corner0[k]);
|
| 1335 |
|
| 1336 |
printf("Enter other corner (%d coordinates): ", nDims);
|
| 1337 |
for (k = 0; k < nDims; ++k)
|
| 1338 |
scanf("%d", &corner1[k]);
|
| 1339 |
|
| 1340 |
|
| 1341 |
/* find first corner */
|
| 1342 |
for (k = 0; k < nDims; ++k)
|
| 1343 |
{
|
| 1344 |
cornerlo[k] = corner0[k];
|
| 1345 |
work[k] = corner1[k];
|
| 1346 |
}
|
| 1347 |
|
| 1348 |
hilbert_box_vtx(nDims, sizeof(unsigned), 8*sizeof(unsigned),
|
| 1349 |
1, cornerlo, work);
|
| 1350 |
printf("Predicted lo corner: ");
|
| 1351 |
for (k = 0; k < nDims; ++k)
|
| 1352 |
printf("%4u", cornerlo[k]);
|
| 1353 |
printf("\n");
|
| 1354 |
|
| 1355 |
|
| 1356 |
/* find last corner */
|
| 1357 |
for (k = 0; k < nDims; ++k)
|
| 1358 |
{
|
| 1359 |
work[k] = corner0[k];
|
| 1360 |
cornerhi[k] = corner1[k];
|
| 1361 |
}
|
| 1362 |
|
| 1363 |
hilbert_box_vtx(nDims, sizeof(unsigned), 8*sizeof(unsigned),
|
| 1364 |
0, work, cornerhi);
|
| 1365 |
printf("Predicted hi corner: ");
|
| 1366 |
for (k = 0; k < nDims; ++k)
|
| 1367 |
printf("%4u", cornerhi[k]);
|
| 1368 |
printf("\n");
|
| 1369 |
|
| 1370 |
array = (array_t*) malloc(maxDim*sizeof(unsigned) << nDims);
|
| 1371 |
for (k = 0; k < (1<<nDims); ++k)
|
| 1372 |
{
|
| 1373 |
unsigned j;
|
| 1374 |
unsigned* eltk = &array[k][0];
|
| 1375 |
for (j = 0; j < nDims; ++j)
|
| 1376 |
{
|
| 1377 |
unsigned* src = ((k>>j)&1)? corner1: corner0;
|
| 1378 |
eltk[j] = src[j];
|
| 1379 |
}
|
| 1380 |
}
|
| 1381 |
|
| 1382 |
g_nDims = nDims;
|
| 1383 |
qsort(array, (1<<nDims), maxDim*sizeof(unsigned), cmp);
|
| 1384 |
|
| 1385 |
printf("Result of sort\n");
|
| 1386 |
for (k = 0; k < (1<<nDims); k += (1 << nDims) - 1)
|
| 1387 |
{
|
| 1388 |
unsigned j;
|
| 1389 |
unsigned* eltk = &array[k][0];
|
| 1390 |
for (j = 0; j < nDims; ++j)
|
| 1391 |
printf("%4u", eltk[j]);
|
| 1392 |
printf("\n");
|
| 1393 |
}
|
| 1394 |
free((char*)array);
|
| 1395 |
return 0;
|
| 1396 |
}
|
| 1397 |
|
| 1398 |
#endif
|
| 1399 |
|
| 1400 |
#ifdef TEST_IEEE_VTX
|
| 1401 |
#include <stdio.h>
|
| 1402 |
#include <stdlib.h>
|
| 1403 |
#include <assert.h>
|
| 1404 |
|
| 1405 |
#define maxDim (8*sizeof(bitmask_t))
|
| 1406 |
typedef double key_t;
|
| 1407 |
|
| 1408 |
unsigned g_nDims;
|
| 1409 |
|
| 1410 |
int cmp(void const* c1p, void const* c2p)
|
| 1411 |
{
|
| 1412 |
return hilbert_ieee_cmp(g_nDims, c1p, c2p);
|
| 1413 |
}
|
| 1414 |
|
| 1415 |
int main()
|
| 1416 |
{
|
| 1417 |
key_t corner0[maxDim], corner1[maxDim];
|
| 1418 |
key_t cornerlo[maxDim], cornerhi[maxDim], work[maxDim];
|
| 1419 |
typedef key_t array_t[maxDim];
|
| 1420 |
array_t* array;
|
| 1421 |
|
| 1422 |
unsigned nDims, i, k;
|
| 1423 |
|
| 1424 |
printf( "Enter nDims: " );
|
| 1425 |
scanf( "%d", &nDims);
|
| 1426 |
if ( nDims == 0 )
|
| 1427 |
return 0;
|
| 1428 |
|
| 1429 |
for (i = 0; i < 10000; ++i)
|
| 1430 |
{
|
| 1431 |
for (k = 0; k < nDims; ++k)
|
| 1432 |
{
|
| 1433 |
corner0[k] = 2.*drand48() - 1.;
|
| 1434 |
corner1[k] = 2.*drand48() - 1.;
|
| 1435 |
}
|
| 1436 |
|
| 1437 |
/* find first corner */
|
| 1438 |
for (k = 0; k < nDims; ++k)
|
| 1439 |
{
|
| 1440 |
cornerlo[k] = corner0[k];
|
| 1441 |
work[k] = corner1[k];
|
| 1442 |
}
|
| 1443 |
|
| 1444 |
hilbert_ieee_box_vtx(nDims, 1, cornerlo, work);
|
| 1445 |
|
| 1446 |
/* find last corner */
|
| 1447 |
for (k = 0; k < nDims; ++k)
|
| 1448 |
{
|
| 1449 |
work[k] = corner0[k];
|
| 1450 |
cornerhi[k] = corner1[k];
|
| 1451 |
}
|
| 1452 |
|
| 1453 |
hilbert_ieee_box_vtx(nDims, 0, work, cornerhi);
|
| 1454 |
|
| 1455 |
array = (array_t*) malloc(maxDim*sizeof(key_t) << nDims);
|
| 1456 |
for (k = 0; k < (1<<nDims); ++k)
|
| 1457 |
{
|
| 1458 |
unsigned j;
|
| 1459 |
key_t* eltk = &array[k][0];
|
| 1460 |
for (j = 0; j < nDims; ++j)
|
| 1461 |
{
|
| 1462 |
key_t* src = ((k>>j)&1)? corner1: corner0;
|
| 1463 |
eltk[j] = src[j];
|
| 1464 |
}
|
| 1465 |
}
|
| 1466 |
|
| 1467 |
g_nDims = nDims;
|
| 1468 |
qsort(array, (1<<nDims), maxDim*sizeof(key_t), cmp);
|
| 1469 |
|
| 1470 |
for (k = 0; k < (1<<nDims); k += (1 << nDims) - 1)
|
| 1471 |
{
|
| 1472 |
unsigned j;
|
| 1473 |
int mismatch = 0;
|
| 1474 |
key_t* eltk = &array[k][0];
|
| 1475 |
for (j = 0; j < nDims & !mismatch; ++j)
|
| 1476 |
{
|
| 1477 |
mismatch = (eltk[j] != ((k==0)? cornerlo: cornerhi)[j]);
|
| 1478 |
}
|
| 1479 |
assert (!mismatch);
|
| 1480 |
}
|
| 1481 |
free((char*)array);
|
| 1482 |
}
|
| 1483 |
return 0;
|
| 1484 |
}
|
| 1485 |
|
| 1486 |
#endif
|
| 1487 |
|
| 1488 |
#ifdef TEST_PT
|
| 1489 |
#include <stdio.h>
|
| 1490 |
#include <stdlib.h>
|
| 1491 |
|
| 1492 |
#define maxDim (8*sizeof(bitmask_t))
|
| 1493 |
|
| 1494 |
unsigned g_nDims;
|
| 1495 |
|
| 1496 |
int cmp(void const* c1p, void const* c2p)
|
| 1497 |
{
|
| 1498 |
return hilbert_cmp(g_nDims, sizeof(unsigned), 8*sizeof(unsigned), c1p, c2p);
|
| 1499 |
}
|
| 1500 |
|
| 1501 |
int main()
|
| 1502 |
{
|
| 1503 |
unsigned point0[maxDim], point1[maxDim];
|
| 1504 |
unsigned pointlo[maxDim], pointhi[maxDim], work[maxDim];
|
| 1505 |
typedef unsigned array_t[maxDim];
|
| 1506 |
array_t* array;
|
| 1507 |
|
| 1508 |
unsigned nDims, i, k, outvolume = 1, involume = 1;
|
| 1509 |
unsigned nextItem;
|
| 1510 |
|
| 1511 |
printf( "Enter nDims: " );
|
| 1512 |
scanf( "%d", &nDims);
|
| 1513 |
if ( nDims == 0 )
|
| 1514 |
return 0;
|
| 1515 |
while ( (i = getchar()) != '\n' && i != EOF )
|
| 1516 |
;
|
| 1517 |
if ( i == EOF )
|
| 1518 |
return 0;
|
| 1519 |
|
| 1520 |
printf("Enter one point (%d coordinates): ", nDims);
|
| 1521 |
for (k = 0; k < nDims; ++k)
|
| 1522 |
scanf("%d", &point0[k]);
|
| 1523 |
|
| 1524 |
printf("Enter other point (%d coordinates, strictly greater): ", nDims);
|
| 1525 |
for (k = 0; k < nDims; ++k)
|
| 1526 |
{
|
| 1527 |
unsigned diff;
|
| 1528 |
scanf("%d", &point1[k]);
|
| 1529 |
diff = point1[k] - point0[k];
|
| 1530 |
outvolume *= diff + 1;
|
| 1531 |
involume *= diff - 1;
|
| 1532 |
}
|
| 1533 |
|
| 1534 |
|
| 1535 |
/* find first point */
|
| 1536 |
for (k = 0; k < nDims; ++k)
|
| 1537 |
{
|
| 1538 |
pointlo[k] = point0[k];
|
| 1539 |
work[k] = point1[k];
|
| 1540 |
}
|
| 1541 |
|
| 1542 |
hilbert_box_pt(nDims, sizeof(unsigned), 8*sizeof(unsigned),
|
| 1543 |
1, pointlo, work);
|
| 1544 |
printf("Predicted lo point: ");
|
| 1545 |
for (k = 0; k < nDims; ++k)
|
| 1546 |
printf("%4u", pointlo[k]);
|
| 1547 |
printf("\n");
|
| 1548 |
|
| 1549 |
|
| 1550 |
/* find last point */
|
| 1551 |
for (k = 0; k < nDims; ++k)
|
| 1552 |
{
|
| 1553 |
work[k] = point0[k];
|
| 1554 |
pointhi[k] = point1[k];
|
| 1555 |
}
|
| 1556 |
|
| 1557 |
hilbert_box_pt(nDims, sizeof(unsigned), 8*sizeof(unsigned),
|
| 1558 |
0, work, pointhi);
|
| 1559 |
printf("Predicted hi point: ");
|
| 1560 |
for (k = 0; k < nDims; ++k)
|
| 1561 |
printf("%4u", pointhi[k]);
|
| 1562 |
printf("\n");
|
| 1563 |
|
| 1564 |
|
| 1565 |
|
| 1566 |
array = (array_t*) malloc(maxDim*sizeof(unsigned) * (outvolume-involume));
|
| 1567 |
if (array == 0)
|
| 1568 |
{
|
| 1569 |
fprintf(stderr, "Out of memory.\n");
|
| 1570 |
exit(-1);
|
| 1571 |
}
|
| 1572 |
nextItem = 0;
|
| 1573 |
for (k = 0; k < outvolume; ++k)
|
| 1574 |
{
|
| 1575 |
unsigned kk = k;
|
| 1576 |
unsigned j;
|
| 1577 |
unsigned* eltk = &array[nextItem][0];
|
| 1578 |
int boundary = 0;
|
| 1579 |
|
| 1580 |
for (j = 0; j < nDims; ++j)
|
| 1581 |
{
|
| 1582 |
unsigned diff1 = point1[j] - point0[j] + 1;
|
| 1583 |
unsigned pos = point0[j] + (kk % diff1);
|
| 1584 |
boundary |= (point0[j] == pos || pos == point1[j]);
|
| 1585 |
eltk[j] = pos;
|
| 1586 |
kk /= diff1;
|
| 1587 |
}
|
| 1588 |
if (boundary)
|
| 1589 |
++nextItem;
|
| 1590 |
}
|
| 1591 |
|
| 1592 |
g_nDims = nDims;
|
| 1593 |
qsort(array, outvolume-involume, maxDim*sizeof(unsigned), cmp);
|
| 1594 |
|
| 1595 |
printf("Result of sort\n");
|
| 1596 |
for (k = 0; k < outvolume-involume; k += outvolume-involume-1)
|
| 1597 |
{
|
| 1598 |
unsigned j;
|
| 1599 |
unsigned* eltk = &array[k][0];
|
| 1600 |
for (j = 0; j < nDims; ++j)
|
| 1601 |
printf("%4u", eltk[j]);
|
| 1602 |
printf("\n");
|
| 1603 |
}
|
| 1604 |
free((char*)array);
|
| 1605 |
return 0;
|
| 1606 |
}
|
| 1607 |
|
| 1608 |
#endif
|
| 1609 |
|
| 1610 |
#ifdef TEST_IEEE_PT
|
| 1611 |
#include <stdio.h>
|
| 1612 |
#include <stdlib.h>
|
| 1613 |
|
| 1614 |
#define maxDim (8*sizeof(bitmask_t))
|
| 1615 |
|
| 1616 |
int main()
|
| 1617 |
{
|
| 1618 |
double point0[maxDim], point1[maxDim];
|
| 1619 |
double pointlo[maxDim], pointhi[maxDim], work[maxDim];
|
| 1620 |
|
| 1621 |
unsigned nDims, k, i;
|
| 1622 |
|
| 1623 |
printf( "Enter nDims: " );
|
| 1624 |
scanf( "%d", &nDims);
|
| 1625 |
if ( nDims == 0 )
|
| 1626 |
return 0;
|
| 1627 |
while ( (i = getchar()) != '\n' && i != EOF )
|
| 1628 |
;
|
| 1629 |
if ( i == EOF )
|
| 1630 |
return 0;
|
| 1631 |
|
| 1632 |
printf("Enter one point (%d coordinates): ", nDims);
|
| 1633 |
for (k = 0; k < nDims; ++k)
|
| 1634 |
scanf("%lf", &point0[k]);
|
| 1635 |
|
| 1636 |
printf("Enter other point (%d coordinates, strictly greater): ", nDims);
|
| 1637 |
for (k = 0; k < nDims; ++k)
|
| 1638 |
scanf("%lf", &point1[k]);
|
| 1639 |
|
| 1640 |
/* find last point */
|
| 1641 |
for (k = 0; k < nDims; ++k)
|
| 1642 |
{
|
| 1643 |
work[k] = point0[k];
|
| 1644 |
pointhi[k] = point1[k];
|
| 1645 |
}
|
| 1646 |
|
| 1647 |
hilbert_ieee_box_pt(nDims, 0, work, pointhi);
|
| 1648 |
printf("Predicted hi point: ");
|
| 1649 |
for (k = 0; k < nDims; ++k)
|
| 1650 |
printf("%10lg", pointhi[k]);
|
| 1651 |
printf("\n");
|
| 1652 |
|
| 1653 |
/* find first point */
|
| 1654 |
for (k = 0; k < nDims; ++k)
|
| 1655 |
{
|
| 1656 |
pointlo[k] = point0[k];
|
| 1657 |
work[k] = point1[k];
|
| 1658 |
}
|
| 1659 |
|
| 1660 |
hilbert_ieee_box_pt(nDims, 1, pointlo, work);
|
| 1661 |
printf("Predicted lo point: ");
|
| 1662 |
for (k = 0; k < nDims; ++k)
|
| 1663 |
printf("%10lg", pointlo[k]);
|
| 1664 |
printf("\n");
|
| 1665 |
|
| 1666 |
/* validate by sorting random boundary points */
|
| 1667 |
#define nPts 1000000
|
| 1668 |
assert(hilbert_ieee_cmp(nDims, pointlo, pointhi) < 0);
|
| 1669 |
for (i = 0; i < nPts; ++i)
|
| 1670 |
{
|
| 1671 |
double pt1[maxDim], pt2[maxDim];
|
| 1672 |
for (k = 0; k < nDims; ++k)
|
| 1673 |
{
|
| 1674 |
if (i % nDims == k)
|
| 1675 |
pt1[k] = point0[k];
|
| 1676 |
else
|
| 1677 |
pt1[k] = point0[k] + drand48()*(point1[k]-point0[k]);
|
| 1678 |
}
|
| 1679 |
for (k = 0; k < nDims; ++k)
|
| 1680 |
{
|
| 1681 |
if (i % nDims == k)
|
| 1682 |
pt2[k] = point1[k];
|
| 1683 |
else
|
| 1684 |
pt2[k] = point0[k] + drand48()*(point1[k]-point0[k]);
|
| 1685 |
}
|
| 1686 |
if (hilbert_ieee_cmp(nDims, pt1, pt2) < 0)
|
| 1687 |
{
|
| 1688 |
if (hilbert_ieee_cmp(nDims, pt1, pointlo) < 0)
|
| 1689 |
memcpy(pointlo, pt1, maxDim*sizeof(double));
|
| 1690 |
if (hilbert_ieee_cmp(nDims, pointhi, pt2) < 0)
|
| 1691 |
memcpy(pointhi, pt2, maxDim*sizeof(double));
|
| 1692 |
}
|
| 1693 |
else
|
| 1694 |
{
|
| 1695 |
if (hilbert_ieee_cmp(nDims, pt2, pointlo) < 0)
|
| 1696 |
memcpy(pointlo, pt2, maxDim*sizeof(double));
|
| 1697 |
if (hilbert_ieee_cmp(nDims, pointhi, pt1) < 0)
|
| 1698 |
memcpy(pointhi, pt1, maxDim*sizeof(double));
|
| 1699 |
}
|
| 1700 |
}
|
| 1701 |
|
| 1702 |
printf("Sorted hi and lo:\n");
|
| 1703 |
for (k = 0; k < nDims; ++k)
|
| 1704 |
printf("%10lg", pointhi[k]);
|
| 1705 |
printf("\n");
|
| 1706 |
for (k = 0; k < nDims; ++k)
|
| 1707 |
printf("%10lg", pointlo[k]);
|
| 1708 |
printf("\n");
|
| 1709 |
|
| 1710 |
return 0;
|
| 1711 |
}
|
| 1712 |
|
| 1713 |
#endif
|
| 1714 |
|
| 1715 |
#ifdef TEST_NEXT
|
| 1716 |
#include <stdio.h>
|
| 1717 |
|
| 1718 |
int main()
|
| 1719 |
{
|
| 1720 |
unsigned i;
|
| 1721 |
unsigned c1[100], c2[100], pt[100];
|
| 1722 |
unsigned nDims, nBytes = 4;
|
| 1723 |
int stat, findPrev;
|
| 1724 |
printf("Enter nDims: " );
|
| 1725 |
scanf("%u", &nDims);
|
| 1726 |
|
| 1727 |
printf("Enter 1st box corner: ");
|
| 1728 |
for (i = 0; i < nDims; ++i)
|
| 1729 |
scanf("%u", &c1[i]);
|
| 1730 |
printf("Enter 2nd box corner: ");
|
| 1731 |
for (i = 0; i < nDims; ++i)
|
| 1732 |
scanf("%u", &c2[i]);
|
| 1733 |
printf("Enter point: ");
|
| 1734 |
for (i = 0; i < nDims; ++i)
|
| 1735 |
scanf("%u", &pt[i]);
|
| 1736 |
printf("Find prev?: ");
|
| 1737 |
scanf("%d", &findPrev);
|
| 1738 |
|
| 1739 |
stat = hilbert_nextinbox(nDims, nBytes, 8*nBytes, findPrev, c1, c2, pt);
|
| 1740 |
|
| 1741 |
if (stat)
|
| 1742 |
for (i = 0; i < nDims; ++i)
|
| 1743 |
printf("%u ", c1[i]);
|
| 1744 |
else
|
| 1745 |
printf("No such point");
|
| 1746 |
|
| 1747 |
printf("\n");
|
| 1748 |
return 0;
|
| 1749 |
}
|
| 1750 |
#endif
|