| 1 | 
#ifndef lint | 
| 2 | 
static const char RCSid[] = "$Id$"; | 
| 3 | 
#endif | 
| 4 | 
#include <stdlib.h> | 
| 5 | 
#include <stdio.h> | 
| 6 | 
#include <string.h> | 
| 7 | 
 | 
| 8 | 
#include "g3sphere.h" | 
| 9 | 
 | 
| 10 | 
static  g3Float get_equator_rad(g3Vec cc,int c1,int c2) | 
| 11 | 
{ | 
| 12 | 
        g3Float res; | 
| 13 | 
 | 
| 14 | 
        if (gb_epseq(cc[c2],0.0)) { | 
| 15 | 
                if (gb_epseq(cc[c1],0.0)) { | 
| 16 | 
                        res = 0; | 
| 17 | 
                } else { | 
| 18 | 
                        res = (cc[c1] > 0.0) ? M_PI/2.0 : -M_PI/2.0; | 
| 19 | 
                } | 
| 20 | 
        } else { | 
| 21 | 
                res = (cc[c2] < 0.0) ? M_PI - fabs(atan(cc[c1]/cc[c2])) : | 
| 22 | 
                                                                                fabs(atan(cc[c1]/cc[c2])); | 
| 23 | 
                if (cc[c1] < 0.0) | 
| 24 | 
                        res *= -1.0; | 
| 25 | 
        } | 
| 26 | 
        return res; | 
| 27 | 
} | 
| 28 | 
 | 
| 29 | 
 | 
| 30 | 
 | 
| 31 | 
g3Vec   g3s_cctomtr(g3Vec res,g3Vec cc) | 
| 32 | 
{ | 
| 33 | 
        int copy = 0; | 
| 34 | 
        if (res == cc) { | 
| 35 | 
                res = g3v_create(); | 
| 36 | 
                copy = 1; | 
| 37 | 
        } | 
| 38 | 
        res[G3S_RAD] = g3v_length(cc); | 
| 39 | 
        res[G3S_MY] = res[G3S_RAD]*get_equator_rad(cc,1,0); | 
| 40 | 
        if (cc[2] >= res[G3S_RAD]) | 
| 41 | 
                res[G3S_MZ] = atanh((1.0 - GB_EPSILON)/res[G3S_RAD]); | 
| 42 | 
        else | 
| 43 | 
                res[G3S_MZ] =  res[G3S_RAD]*atanh(cc[2]/res[G3S_RAD]); | 
| 44 | 
        if (copy) { | 
| 45 | 
                g3v_copy(cc,res); | 
| 46 | 
                g3v_free(res); | 
| 47 | 
                res = cc; | 
| 48 | 
        } | 
| 49 | 
        return res; | 
| 50 | 
} | 
| 51 | 
 | 
| 52 | 
g3Vec   g3s_mtrtocc(g3Vec res,g3Vec mtr) | 
| 53 | 
{ | 
| 54 | 
        g3Float r = mtr[G3S_RAD]; | 
| 55 | 
 | 
| 56 | 
        res[0] = r*cos(mtr[G3S_MY]/r)/cosh(mtr[G3S_MZ]/r); | 
| 57 | 
        res[1] = r*sin(mtr[G3S_MY]/r)/cosh(mtr[G3S_MZ]/r); | 
| 58 | 
        res[2] = r*tanh(mtr[G3S_MZ]/r); | 
| 59 | 
        return res; | 
| 60 | 
} | 
| 61 | 
 | 
| 62 | 
g3Vec   g3s_cctotr(g3Vec res,g3Vec cc) | 
| 63 | 
{ | 
| 64 | 
        g3Float len; | 
| 65 | 
        G3S_RESCOPY(res,cc); | 
| 66 | 
        if (gb_epseq((res[G3S_RAD] = g3v_length(cc)),0)) { | 
| 67 | 
                fprintf(stderr,"g3s_cctotr: zero vector\n"); | 
| 68 | 
                G3S_RESFREE(res,cc); | 
| 69 | 
                return NULL; | 
| 70 | 
        } | 
| 71 | 
        g3v_copy(res,cc); | 
| 72 | 
        res[1] = 0; | 
| 73 | 
        len = g3v_length(res); | 
| 74 | 
        if (gb_epseq(len,0.0)) { | 
| 75 | 
                res[G3S_THETA] = M_PI/2.0; | 
| 76 | 
                res[G3S_PHI] = gb_signum(cc[1])*M_PI/2.0; | 
| 77 | 
        } else { | 
| 78 | 
                res[G3S_THETA] = acos(cc[2]/len); | 
| 79 | 
                res[G3S_PHI] = atan(cc[1]/len); | 
| 80 | 
                if (cc[0] < 0.0) | 
| 81 | 
                        res[G3S_THETA] *= -1.0; | 
| 82 | 
        } | 
| 83 | 
        res[G3S_RAD] = g3v_length(cc); | 
| 84 | 
        g3s_trwrap(res); | 
| 85 | 
        G3S_RESFREE(res,cc); | 
| 86 | 
        return res; | 
| 87 | 
} | 
| 88 | 
         | 
| 89 | 
g3Vec   g3s_trtocc(g3Vec res,g3Vec tr) | 
| 90 | 
{ | 
| 91 | 
        g3Vec v; | 
| 92 | 
        G3S_RESCOPY(res,tr); | 
| 93 | 
        v = g3v_create(); | 
| 94 | 
        g3v_set(v,0,-1,0); | 
| 95 | 
        g3v_set(res,0,0,1); | 
| 96 | 
        g3v_rotate(res,res,v,tr[G3S_THETA]); | 
| 97 | 
        g3v_cross(v,res,v); | 
| 98 | 
        g3v_rotate(res,res,v,tr[G3S_PHI]); | 
| 99 | 
        g3v_free(v); | 
| 100 | 
        g3v_scale(res,res,tr[G3S_RAD]); | 
| 101 | 
        G3S_RESFREE(res,tr); | 
| 102 | 
        return res; | 
| 103 | 
} | 
| 104 | 
 | 
| 105 | 
g3Vec   g3s_sphtotr(g3Vec res,g3Vec sph) | 
| 106 | 
{ | 
| 107 | 
        g3s_sphtocc(res,sph); | 
| 108 | 
        return g3s_cctotr(res,res); | 
| 109 | 
} | 
| 110 | 
 | 
| 111 | 
g3Vec   g3s_trtosph(g3Vec res,g3Vec tr) | 
| 112 | 
{ | 
| 113 | 
        g3s_trtocc(res,tr); | 
| 114 | 
        return g3s_cctosph(res,res); | 
| 115 | 
} | 
| 116 | 
 | 
| 117 | 
g3Vec   g3s_sphtocc(g3Vec res,g3Vec sph) | 
| 118 | 
{ | 
| 119 | 
        g3Float r,s2,t; | 
| 120 | 
    r = sph[G3S_RAD]; | 
| 121 | 
    s2 = sin(sph[G3S_THETA]); | 
| 122 | 
    t = sph[G3S_THETA]; | 
| 123 | 
    res[0] = r*cos(sph[G3S_PHI])*s2; | 
| 124 | 
    res[1] = r*sin(sph[G3S_PHI])*s2; | 
| 125 | 
    res[2] = r*cos(t); | 
| 126 | 
        return res; | 
| 127 | 
} | 
| 128 | 
 | 
| 129 | 
g3Vec   g3s_cctosph(g3Vec res,g3Vec cc) | 
| 130 | 
{ | 
| 131 | 
        int copy = 0; | 
| 132 | 
        if (res == cc) { | 
| 133 | 
                res = g3v_create(); | 
| 134 | 
                copy = 1; | 
| 135 | 
        } | 
| 136 | 
        res[G3S_RAD] = g3v_length(cc); | 
| 137 | 
        res[G3S_THETA] = acos(cc[2]/res[G3S_RAD]); | 
| 138 | 
        res[G3S_PHI] = get_equator_rad(cc,1,0); | 
| 139 | 
        if (copy) { | 
| 140 | 
                g3v_copy(cc,res); | 
| 141 | 
                g3v_free(res); | 
| 142 | 
                res = cc; | 
| 143 | 
        } | 
| 144 | 
        return res; | 
| 145 | 
} | 
| 146 | 
 | 
| 147 | 
g3Vec   g3s_sphwrap(g3Vec sph) | 
| 148 | 
{ | 
| 149 | 
        sph[G3S_THETA] = fmod((fmod(sph[G3S_THETA],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); | 
| 150 | 
        sph[G3S_PHI] = fmod((fmod(sph[G3S_PHI],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); | 
| 151 | 
        return sph; | 
| 152 | 
} | 
| 153 | 
 | 
| 154 | 
g3Vec   g3s_trwrap(g3Vec tr) | 
| 155 | 
{ | 
| 156 | 
        tr[G3S_THETA] = fmod((fmod(tr[G3S_THETA],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); | 
| 157 | 
        tr[G3S_PHI] += M_PI; | 
| 158 | 
        tr[G3S_PHI] = fmod((fmod(tr[G3S_PHI],2.0*M_PI) + 2.0*M_PI),2.0*M_PI); | 
| 159 | 
        tr[G3S_PHI] -= M_PI; | 
| 160 | 
        return tr; | 
| 161 | 
} | 
| 162 | 
 | 
| 163 | 
g3Float g3s_dist(const g3Vec cc1,const g3Vec cc2) | 
| 164 | 
{ | 
| 165 | 
        return acos(g3v_dot(cc1,cc2)); | 
| 166 | 
} | 
| 167 | 
 | 
| 168 | 
g3Float g3s_dist_norm(const g3Vec cc1,const g3Vec cc2) | 
| 169 | 
{ | 
| 170 | 
        return acos(g3v_dot(g3v_normalize(cc1),g3v_normalize(cc2))); | 
| 171 | 
} | 
| 172 | 
 | 
| 173 | 
 | 
| 174 | 
 | 
| 175 | 
 | 
| 176 | 
#ifdef G3SPHERE_TEST | 
| 177 | 
 | 
| 178 | 
int     main(int argc,char** argv) | 
| 179 | 
{ | 
| 180 | 
        g3Vec a,b,e,z,ang; | 
| 181 | 
        int i; | 
| 182 | 
        g3Float vo,v,vr; | 
| 183 | 
 | 
| 184 | 
        if (argc < 4) { | 
| 185 | 
                fprintf(stderr,"usage: %s <s | e> <x1> <y1> <z1>\n",argv[0]); | 
| 186 | 
                return EXIT_FAILURE; | 
| 187 | 
        } | 
| 188 | 
         | 
| 189 | 
        a = g3v_create(); | 
| 190 | 
        e = g3v_create(); | 
| 191 | 
        if (!strcmp(argv[1],"s")) { | 
| 192 | 
                g3v_set(a,1.0,DEG2RAD(atof(argv[2])),DEG2RAD(atof(argv[3]))); | 
| 193 | 
                g3v_print(g3s_sphtocc(a,a),stdout);; | 
| 194 | 
                //g3s_trtosph(a,a); | 
| 195 | 
                //g3v_print(a,stdout); | 
| 196 | 
                //printf("%f %f",RAD2DEG(a[1]),RAD2DEG(a[2])); | 
| 197 | 
                printf("\n"); | 
| 198 | 
        } else { | 
| 199 | 
                g3v_set(a,atof(argv[2]),atof(argv[3]),atof(argv[4])); | 
| 200 | 
                g3s_cctosph(a,a); | 
| 201 | 
                printf("%f %f",RAD2DEG(a[1]),RAD2DEG(a[2])); | 
| 202 | 
                printf("\n"); | 
| 203 | 
        } | 
| 204 | 
        exit(1); | 
| 205 | 
        for(i=0;i<10000;i++) { | 
| 206 | 
                a[0] = 1.0;      | 
| 207 | 
                a[1] = M_PI/2.0*rand()/RAND_MAX; | 
| 208 | 
                a[2] = 2.0*M_PI*rand()/RAND_MAX; | 
| 209 | 
                g3s_sphtocc(a,a); | 
| 210 | 
                g3s_cctotr(e,a); | 
| 211 | 
                g3s_trtocc(e,e); | 
| 212 | 
                if (!g3v_epseq(e,a)) { | 
| 213 | 
                        fprintf(stderr,"aaaa \n"); | 
| 214 | 
                        g3v_print(a,stderr); | 
| 215 | 
                        g3v_print(e,stderr); | 
| 216 | 
                } | 
| 217 | 
        } | 
| 218 | 
        fprintf(stderr,"ok\n"); | 
| 219 | 
        exit(1); | 
| 220 | 
        g3v_set(a,atof(argv[1]),DEG2RAD(atof(argv[2])),DEG2RAD(atof(argv[3]))); | 
| 221 | 
        b = g3v_create(); | 
| 222 | 
        z = g3v_create(); | 
| 223 | 
        ang = g3v_create(); | 
| 224 | 
        g3v_set(z,0,0,1); | 
| 225 | 
        g3v_normalize(a); | 
| 226 | 
        for(i=0;i<5000;i++) { | 
| 227 | 
                b[0] = 1.0;      | 
| 228 | 
                b[1] = M_PI/2.0*rand()/RAND_MAX; | 
| 229 | 
                b[2] = 2.0*M_PI*rand()/RAND_MAX; | 
| 230 | 
                g3v_copy(ang,b); | 
| 231 | 
                g3s_sphtocc(b,b); | 
| 232 | 
                v = g3s_dist(a,b); | 
| 233 | 
                if (!gb_epseq(sqrt(2.0 - 2.0*cos(v)),g3v_length(g3v_sub(ang,b,a)))) | 
| 234 | 
                        fprintf(stderr,"oops %f %f\n",sqrt(2.0 - 2.0*cos(v)),g3v_length(g3v_sub(ang,b,a))); | 
| 235 | 
                vo = (v > 0.2) ? 0.1 : (0.4 - v); | 
| 236 | 
                vr = sqrt(2.0 - 2.0*cos(0.2)); | 
| 237 | 
                if (fabs(a[0] - b[0]) > vr || fabs(a[1] - b[1]) > vr || fabs(a[2] - b[2]) > vr) { | 
| 238 | 
                        vo -= 0.1; | 
| 239 | 
                        if (v < 0.2) { | 
| 240 | 
                                vo = 3; | 
| 241 | 
                                fprintf(stderr,"autsch %f %f\n",v,vr); | 
| 242 | 
                        } | 
| 243 | 
                } | 
| 244 | 
                g3s_cctosph(b,b); | 
| 245 | 
                printf("%f %f %f\n",b[G3S_THETA],b[G3S_PHI],vo); | 
| 246 | 
        } | 
| 247 | 
        //printf("%f\n",g3s_dist_norm(a,b)); | 
| 248 | 
        //g3v_print(g3s_cctomtr(b,a),stdout); | 
| 249 | 
        //g3v_print(g3s_cctosph(b,a),stdout); | 
| 250 | 
        //printf("\n"); | 
| 251 | 
        return EXIT_SUCCESS; | 
| 252 | 
} | 
| 253 | 
 | 
| 254 | 
#endif |