| 1 |
greg |
2.20 |
/* RCSid $Id: fvect.h,v 2.19 2021/02/12 00:41:18 greg Exp $ */
|
| 2 |
greg |
2.7 |
/*
|
| 3 |
|
|
* Declarations for floating-point vector operations.
|
| 4 |
|
|
*/
|
| 5 |
schorsch |
2.9 |
#ifndef _RAD_FVECT_H_
|
| 6 |
|
|
#define _RAD_FVECT_H_
|
| 7 |
|
|
#ifdef __cplusplus
|
| 8 |
|
|
extern "C" {
|
| 9 |
|
|
#endif
|
| 10 |
greg |
1.1 |
|
| 11 |
greg |
1.3 |
#ifdef SMLFLT
|
| 12 |
schorsch |
2.10 |
#define RREAL float
|
| 13 |
greg |
2.3 |
#define FTINY (1e-3)
|
| 14 |
greg |
2.16 |
#define FVFORMAT "%f %f %f"
|
| 15 |
greg |
1.2 |
#else
|
| 16 |
schorsch |
2.10 |
#define RREAL double
|
| 17 |
greg |
1.3 |
#define FTINY (1e-6)
|
| 18 |
greg |
2.16 |
#define FVFORMAT "%lf %lf %lf"
|
| 19 |
greg |
1.2 |
#endif
|
| 20 |
greg |
1.3 |
#define FHUGE (1e10)
|
| 21 |
greg |
1.1 |
|
| 22 |
greg |
2.19 |
#define FABSEQ(x1,x2) ((x1)+FTINY > (x2) && (x2)+FTINY > (x1))
|
| 23 |
|
|
#define FRELEQ(x1,x2) ((x1)*(1.+FTINY) >= (x2) && (x2)*(1.+FTINY) >= (x1))
|
| 24 |
|
|
|
| 25 |
|
|
#define VABSEQ(v,w) (FABSEQ((v)[0],(w)[0]) && FABSEQ((v)[1],(w)[1]) \
|
| 26 |
|
|
&& FABSEQ((v)[2],(w)[2]))
|
| 27 |
|
|
#define VRELEQ(v,w) (FRELEQ((v)[0],(w)[0]) && FRELEQ((v)[1],(w)[1]) \
|
| 28 |
|
|
&& FRELEQ((v)[2],(w)[2]))
|
| 29 |
|
|
|
| 30 |
schorsch |
2.10 |
typedef RREAL FVECT[3];
|
| 31 |
greg |
1.2 |
|
| 32 |
greg |
1.1 |
#define VCOPY(v1,v2) ((v1)[0]=(v2)[0],(v1)[1]=(v2)[1],(v1)[2]=(v2)[2])
|
| 33 |
|
|
#define DOT(v1,v2) ((v1)[0]*(v2)[0]+(v1)[1]*(v2)[1]+(v1)[2]*(v2)[2])
|
| 34 |
gregl |
2.5 |
#define VLEN(v) sqrt(DOT(v,v))
|
| 35 |
gwlarson |
2.6 |
#define VADD(vr,v1,v2) ((vr)[0]=(v1)[0]+(v2)[0], \
|
| 36 |
|
|
(vr)[1]=(v1)[1]+(v2)[1], \
|
| 37 |
|
|
(vr)[2]=(v1)[2]+(v2)[2])
|
| 38 |
|
|
#define VSUB(vr,v1,v2) ((vr)[0]=(v1)[0]-(v2)[0], \
|
| 39 |
|
|
(vr)[1]=(v1)[1]-(v2)[1], \
|
| 40 |
|
|
(vr)[2]=(v1)[2]-(v2)[2])
|
| 41 |
greg |
1.2 |
#define VSUM(vr,v1,v2,f) ((vr)[0]=(v1)[0]+(f)*(v2)[0], \
|
| 42 |
|
|
(vr)[1]=(v1)[1]+(f)*(v2)[1], \
|
| 43 |
|
|
(vr)[2]=(v1)[2]+(f)*(v2)[2])
|
| 44 |
greg |
2.20 |
#define VLERP(vr,v1,a,v2) ((vr)[0]=(1.-(a))*(v1)[0]+(a)*(v2)[0], \
|
| 45 |
|
|
(vr)[1]=(1.-(a))*(v1)[1]+(a)*(v2)[1], \
|
| 46 |
|
|
(vr)[2]=(1.-(a))*(v1)[2]+(a)*(v2)[2])
|
| 47 |
gwlarson |
2.6 |
#define VCROSS(vr,v1,v2) \
|
| 48 |
|
|
((vr)[0]=(v1)[1]*(v2)[2]-(v1)[2]*(v2)[1], \
|
| 49 |
|
|
(vr)[1]=(v1)[2]*(v2)[0]-(v1)[0]*(v2)[2], \
|
| 50 |
|
|
(vr)[2]=(v1)[0]*(v2)[1]-(v1)[1]*(v2)[0])
|
| 51 |
greg |
1.1 |
|
| 52 |
greg |
2.14 |
#define GEOD_RAD 0 /* geodesic distance specified in radians */
|
| 53 |
|
|
#define GEOD_ABS 1 /* absolute geodesic distance */
|
| 54 |
|
|
#define GEOD_REL 2 /* relative geodesic distance */
|
| 55 |
greg |
2.7 |
|
| 56 |
greg |
2.15 |
extern double Acos(double x);
|
| 57 |
|
|
extern double Asin(double x);
|
| 58 |
greg |
2.13 |
extern double fdot(const FVECT v1, const FVECT v2);
|
| 59 |
|
|
extern double dist2(const FVECT v1, const FVECT v2);
|
| 60 |
|
|
extern double dist2line(const FVECT p, const FVECT ep1, const FVECT ep2);
|
| 61 |
|
|
extern double dist2lseg(const FVECT p, const FVECT ep1, const FVECT ep2);
|
| 62 |
|
|
extern void fcross(FVECT vres, const FVECT v1, const FVECT v2);
|
| 63 |
|
|
extern void fvsum(FVECT vres, const FVECT v0, const FVECT v1, double f);
|
| 64 |
greg |
2.7 |
extern double normalize(FVECT v);
|
| 65 |
greg |
2.18 |
extern int getperpendicular(FVECT vp, const FVECT v, int randomize);
|
| 66 |
greg |
2.13 |
extern int closestapproach(RREAL t[2],
|
| 67 |
|
|
const FVECT rorg0, const FVECT rdir0,
|
| 68 |
|
|
const FVECT rorg1, const FVECT rdir1);
|
| 69 |
|
|
extern void spinvector(FVECT vres, const FVECT vorig,
|
| 70 |
|
|
const FVECT vnorm, double theta);
|
| 71 |
greg |
2.14 |
extern double geodesic(FVECT vres, const FVECT vorig,
|
| 72 |
|
|
const FVECT vtarg, double t, int meas);
|
| 73 |
schorsch |
2.9 |
#ifdef __cplusplus
|
| 74 |
|
|
}
|
| 75 |
greg |
2.7 |
#endif
|
| 76 |
schorsch |
2.9 |
#endif /* _RAD_FVECT_H_ */
|
| 77 |
|
|
|