ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.19
Committed: Sat Jun 29 21:03:44 2013 UTC (10 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2, rad4R2, rad4R2P1
Changes since 2.18: +21 -1 lines
Log Message:
Fixed problem with acos(1) returning NaN

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.19 static const char RCSid[] = "$Id: fvect.c,v 2.18 2013/04/03 00:22:12 greg Exp $";
3 greg 1.1 #endif
4 greg 2.6 /*
5     * fvect.c - routines for floating-point vector calculations
6     */
7 greg 1.1
8 greg 2.7 #include "copyright.h"
9 greg 1.1
10 greg 2.19 #define _USE_MATH_DEFINES
11 greg 2.2 #include <math.h>
12 greg 1.1 #include "fvect.h"
13    
14 greg 2.19 double
15     Acos(double x) /* insurance for touchy math library */
16     {
17     if (x <= -1.+FTINY*FTINY)
18     return(M_PI);
19     if (x >= 1.-FTINY*FTINY)
20     return(.0);
21     return(acos(x));
22     }
23    
24     double
25     Asin(double x) /* insurance for touchy math library */
26     {
27     if (x <= -1.+FTINY*FTINY)
28     return(-M_PI/2.);
29     if (x >= 1.-FTINY*FTINY)
30     return(M_PI/2);
31     return(asin(x));
32     }
33 greg 1.1
34     double
35 greg 2.8 fdot( /* return the dot product of two vectors */
36 greg 2.13 const FVECT v1,
37     const FVECT v2
38 greg 2.8 )
39 greg 1.1 {
40     return(DOT(v1,v2));
41     }
42    
43    
44     double
45 greg 2.8 dist2( /* return square of distance between points */
46 greg 2.13 const FVECT p1,
47     const FVECT p2
48 greg 2.8 )
49 greg 1.1 {
50 gwlarson 2.4 FVECT delta;
51 greg 1.1
52 greg 2.18 VSUB(delta, p2, p1);
53 gwlarson 2.5
54 greg 1.1 return(DOT(delta, delta));
55     }
56    
57    
58     double
59 greg 2.8 dist2line( /* return square of distance to line */
60 greg 2.13 const FVECT p, /* the point */
61     const FVECT ep1,
62     const FVECT ep2 /* points on the line */
63 greg 2.8 )
64 greg 1.1 {
65 greg 2.11 double d, d1, d2;
66 greg 1.1
67     d = dist2(ep1, ep2);
68     d1 = dist2(ep1, p);
69 gwlarson 2.5 d2 = d + d1 - dist2(ep2, p);
70 greg 1.1
71 gwlarson 2.5 return(d1 - 0.25*d2*d2/d);
72 greg 1.1 }
73    
74    
75     double
76 greg 2.8 dist2lseg( /* return square of distance to line segment */
77 greg 2.13 const FVECT p, /* the point */
78     const FVECT ep1,
79     const FVECT ep2 /* the end points */
80 greg 2.8 )
81 greg 1.1 {
82 greg 2.11 double d, d1, d2;
83 greg 1.1
84     d = dist2(ep1, ep2);
85     d1 = dist2(ep1, p);
86     d2 = dist2(ep2, p);
87    
88     if (d2 > d1) { /* check if past endpoints */
89     if (d2 - d1 > d)
90     return(d1);
91     } else {
92     if (d1 - d2 > d)
93     return(d2);
94     }
95 gwlarson 2.5 d2 = d + d1 - d2;
96 greg 1.1
97 gwlarson 2.5 return(d1 - 0.25*d2*d2/d); /* distance to line */
98 greg 1.1 }
99    
100    
101 greg 2.6 void
102 greg 2.8 fcross( /* vres = v1 X v2 */
103 greg 2.11 FVECT vres,
104 greg 2.13 const FVECT v1,
105     const FVECT v2
106 greg 2.8 )
107 greg 1.1 {
108 greg 2.18 VCROSS(vres, v1, v2);
109 greg 1.1 }
110    
111    
112 greg 2.6 void
113 greg 2.8 fvsum( /* vres = v0 + f*v1 */
114 greg 2.11 FVECT vres,
115 greg 2.13 const FVECT v0,
116     const FVECT v1,
117 greg 2.11 double f
118 greg 2.8 )
119 greg 1.4 {
120 greg 2.18 VSUM(vres, v0, v1, f);
121 greg 1.4 }
122    
123    
124 greg 1.1 double
125 greg 2.8 normalize( /* normalize a vector, return old magnitude */
126 greg 2.11 FVECT v
127 greg 2.8 )
128 greg 1.1 {
129 greg 2.11 double len, d;
130 greg 1.1
131 gwlarson 2.5 d = DOT(v, v);
132 greg 1.1
133 greg 2.10 if (d == 0.0)
134 greg 1.1 return(0.0);
135    
136 greg 2.15 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
137 gwlarson 2.5 len = 0.5 + 0.5*d; /* first order approximation */
138 greg 2.12 d = 2.0 - len;
139     } else {
140 gwlarson 2.5 len = sqrt(d);
141 greg 2.12 d = 1.0/len;
142     }
143     v[0] *= d;
144 gwlarson 2.5 v[1] *= d;
145     v[2] *= d;
146 greg 2.3
147 greg 1.1 return(len);
148     }
149 greg 1.5
150    
151 greg 2.8 int
152     closestapproach( /* closest approach of two rays */
153     RREAL t[2], /* returned distances along each ray */
154 greg 2.13 const FVECT rorg0, /* first origin */
155     const FVECT rdir0, /* first direction (normalized) */
156     const FVECT rorg1, /* second origin */
157     const FVECT rdir1 /* second direction (normalized) */
158 greg 2.8 )
159     {
160     double dotprod = DOT(rdir0, rdir1);
161     double denom = 1. - dotprod*dotprod;
162     double o1o2_d1;
163     FVECT o0o1;
164    
165     if (denom <= FTINY) { /* check if lines are parallel */
166     t[0] = t[1] = 0.0;
167     return(0);
168     }
169     VSUB(o0o1, rorg0, rorg1);
170     o1o2_d1 = DOT(o0o1, rdir1);
171     t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
172     t[1] = o1o2_d1 + t[0]*dotprod;
173     return(1);
174     }
175    
176    
177 greg 2.6 void
178 greg 2.8 spinvector( /* rotate vector around normal */
179 greg 2.15 FVECT vres, /* returned vector (same magnitude as vorig) */
180 greg 2.13 const FVECT vorig, /* original vector */
181     const FVECT vnorm, /* normalized vector for rotation */
182 greg 2.14 double theta /* right-hand radians */
183 greg 2.8 )
184 greg 1.5 {
185 greg 1.6 double sint, cost, normprod;
186 greg 1.5 FVECT vperp;
187 greg 2.11 int i;
188 greg 1.5
189     if (theta == 0.0) {
190 greg 1.6 if (vres != vorig)
191     VCOPY(vres, vorig);
192 greg 1.5 return;
193     }
194 greg 1.6 cost = cos(theta);
195 greg 1.5 sint = sin(theta);
196 greg 1.6 normprod = DOT(vorig, vnorm)*(1.-cost);
197 greg 2.18 VCROSS(vperp, vnorm, vorig);
198 greg 1.5 for (i = 0; i < 3; i++)
199 greg 1.6 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
200 greg 1.5 }
201 greg 2.15
202     double
203     geodesic( /* rotate vector on great circle towards target */
204     FVECT vres, /* returned vector (same magnitude as vorig) */
205     const FVECT vorig, /* original vector */
206     const FVECT vtarg, /* vector we are rotating towards */
207     double t, /* amount along arc directed towards vtarg */
208     int meas /* distance measure (radians, absolute, relative) */
209     )
210     {
211     FVECT normtarg;
212 greg 2.17 double volen, dotprod, sintr, cost;
213 greg 2.15 int i;
214    
215 greg 2.16 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
216 greg 2.15 if (vres != vorig)
217     VCOPY(vres, vorig);
218     if (t == 0.0)
219     return(VLEN(vres)); /* no rotation requested */
220     if ((volen = normalize(vres)) == 0.0)
221     return(0.0);
222     if (normalize(normtarg) == 0.0)
223     return(0.0); /* target vector is zero */
224     dotprod = DOT(vres, normtarg);
225     /* check for colinear */
226     if (dotprod >= 1.0-FTINY*FTINY) {
227     if (meas != GEOD_REL)
228     return(0.0);
229     vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
230     return(volen);
231     }
232     if (dotprod <= -1.0+FTINY*FTINY)
233     return(0.0);
234     if (meas == GEOD_ABS)
235     t /= volen;
236     else if (meas == GEOD_REL)
237     t *= acos(dotprod);
238     cost = cos(t);
239 greg 2.17 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
240 greg 2.15 for (i = 0; i < 3; i++)
241     vres[i] = volen*( cost*vres[i] +
242 greg 2.17 sintr*(normtarg[i] - dotprod*vres[i]) );
243 greg 2.15
244     return(volen); /* return vector length */
245     }