| 1 |
/* Copyright (c) 1998 Silicon Graphics, Inc. */
|
| 2 |
|
| 3 |
#ifndef lint
|
| 4 |
static char SCCSid[] = "$SunId$ SGI";
|
| 5 |
#endif
|
| 6 |
|
| 7 |
/*
|
| 8 |
* fvect.c - routines for float vector calculations
|
| 9 |
*
|
| 10 |
* 8/14/85
|
| 11 |
*/
|
| 12 |
|
| 13 |
#include <math.h>
|
| 14 |
#include "fvect.h"
|
| 15 |
|
| 16 |
|
| 17 |
double
|
| 18 |
fdot(v1, v2) /* return the dot product of two vectors */
|
| 19 |
register FVECT v1, v2;
|
| 20 |
{
|
| 21 |
return(DOT(v1,v2));
|
| 22 |
}
|
| 23 |
|
| 24 |
|
| 25 |
double
|
| 26 |
dist2(p1, p2) /* return square of distance between points */
|
| 27 |
register FVECT p1, p2;
|
| 28 |
{
|
| 29 |
FVECT delta;
|
| 30 |
|
| 31 |
delta[0] = p2[0] - p1[0];
|
| 32 |
delta[1] = p2[1] - p1[1];
|
| 33 |
delta[2] = p2[2] - p1[2];
|
| 34 |
|
| 35 |
return(DOT(delta, delta));
|
| 36 |
}
|
| 37 |
|
| 38 |
|
| 39 |
double
|
| 40 |
dist2line(p, ep1, ep2) /* return square of distance to line */
|
| 41 |
FVECT p; /* the point */
|
| 42 |
FVECT ep1, ep2; /* points on the line */
|
| 43 |
{
|
| 44 |
register double d, d1, d2;
|
| 45 |
|
| 46 |
d = dist2(ep1, ep2);
|
| 47 |
d1 = dist2(ep1, p);
|
| 48 |
d2 = d + d1 - dist2(ep2, p);
|
| 49 |
|
| 50 |
return(d1 - 0.25*d2*d2/d);
|
| 51 |
}
|
| 52 |
|
| 53 |
|
| 54 |
double
|
| 55 |
dist2lseg(p, ep1, ep2) /* return square of distance to line segment */
|
| 56 |
FVECT p; /* the point */
|
| 57 |
FVECT ep1, ep2; /* the end points */
|
| 58 |
{
|
| 59 |
register double d, d1, d2;
|
| 60 |
|
| 61 |
d = dist2(ep1, ep2);
|
| 62 |
d1 = dist2(ep1, p);
|
| 63 |
d2 = dist2(ep2, p);
|
| 64 |
|
| 65 |
if (d2 > d1) { /* check if past endpoints */
|
| 66 |
if (d2 - d1 > d)
|
| 67 |
return(d1);
|
| 68 |
} else {
|
| 69 |
if (d1 - d2 > d)
|
| 70 |
return(d2);
|
| 71 |
}
|
| 72 |
d2 = d + d1 - d2;
|
| 73 |
|
| 74 |
return(d1 - 0.25*d2*d2/d); /* distance to line */
|
| 75 |
}
|
| 76 |
|
| 77 |
|
| 78 |
fcross(vres, v1, v2) /* vres = v1 X v2 */
|
| 79 |
register FVECT vres, v1, v2;
|
| 80 |
{
|
| 81 |
vres[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
| 82 |
vres[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
| 83 |
vres[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
| 84 |
}
|
| 85 |
|
| 86 |
|
| 87 |
fvsum(vres, v0, v1, f) /* vres = v0 + f*v1 */
|
| 88 |
register FVECT vres, v0, v1;
|
| 89 |
register double f;
|
| 90 |
{
|
| 91 |
vres[0] = v0[0] + f*v1[0];
|
| 92 |
vres[1] = v0[1] + f*v1[1];
|
| 93 |
vres[2] = v0[2] + f*v1[2];
|
| 94 |
}
|
| 95 |
|
| 96 |
|
| 97 |
double
|
| 98 |
normalize(v) /* normalize a vector, return old magnitude */
|
| 99 |
register FVECT v;
|
| 100 |
{
|
| 101 |
register double len, d;
|
| 102 |
|
| 103 |
d = DOT(v, v);
|
| 104 |
|
| 105 |
if (d <= 0.0)
|
| 106 |
return(0.0);
|
| 107 |
|
| 108 |
if (d <= 1.0+FTINY && d >= 1.0-FTINY)
|
| 109 |
len = 0.5 + 0.5*d; /* first order approximation */
|
| 110 |
else
|
| 111 |
len = sqrt(d);
|
| 112 |
|
| 113 |
v[0] *= d = 1.0/len;
|
| 114 |
v[1] *= d;
|
| 115 |
v[2] *= d;
|
| 116 |
|
| 117 |
return(len);
|
| 118 |
}
|
| 119 |
|
| 120 |
|
| 121 |
spinvector(vres, vorig, vnorm, theta) /* rotate vector around normal */
|
| 122 |
FVECT vres, vorig, vnorm;
|
| 123 |
double theta;
|
| 124 |
{
|
| 125 |
double sint, cost, normprod;
|
| 126 |
FVECT vperp;
|
| 127 |
register int i;
|
| 128 |
|
| 129 |
if (theta == 0.0) {
|
| 130 |
if (vres != vorig)
|
| 131 |
VCOPY(vres, vorig);
|
| 132 |
return;
|
| 133 |
}
|
| 134 |
cost = cos(theta);
|
| 135 |
sint = sin(theta);
|
| 136 |
normprod = DOT(vorig, vnorm)*(1.-cost);
|
| 137 |
fcross(vperp, vnorm, vorig);
|
| 138 |
for (i = 0; i < 3; i++)
|
| 139 |
vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
|
| 140 |
}
|