ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.24
Committed: Thu Jul 23 18:22:26 2015 UTC (8 years, 9 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R2, rad5R0, rad5R1, rad5R3
Changes since 2.23: +3 -3 lines
Log Message:
Made it so we'll never generate another segfault from this code

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: fvect.c,v 2.23 2015/05/21 07:02:23 greg Exp $";
3 #endif
4 /*
5 * fvect.c - routines for floating-point vector calculations
6 */
7
8 #include "copyright.h"
9
10 #define _USE_MATH_DEFINES
11 #include <math.h>
12 #include "fvect.h"
13 #include "random.h"
14
15 double
16 Acos(double x) /* insurance for touchy math library */
17 {
18 if (x <= -1.+FTINY*FTINY)
19 return(M_PI);
20 if (x >= 1.-FTINY*FTINY)
21 return(.0);
22 return(acos(x));
23 }
24
25 double
26 Asin(double x) /* insurance for touchy math library */
27 {
28 if (x <= -1.+FTINY*FTINY)
29 return(-M_PI/2.);
30 if (x >= 1.-FTINY*FTINY)
31 return(M_PI/2);
32 return(asin(x));
33 }
34
35 double
36 fdot( /* return the dot product of two vectors */
37 const FVECT v1,
38 const FVECT v2
39 )
40 {
41 return(DOT(v1,v2));
42 }
43
44
45 double
46 dist2( /* return square of distance between points */
47 const FVECT p1,
48 const FVECT p2
49 )
50 {
51 FVECT delta;
52
53 VSUB(delta, p2, p1);
54
55 return(DOT(delta, delta));
56 }
57
58
59 double
60 dist2line( /* return square of distance to line */
61 const FVECT p, /* the point */
62 const FVECT ep1,
63 const FVECT ep2 /* points on the line */
64 )
65 {
66 double d, d1, d2;
67
68 d = dist2(ep1, ep2);
69 d1 = dist2(ep1, p);
70 d2 = d + d1 - dist2(ep2, p);
71
72 return(d1 - 0.25*d2*d2/d);
73 }
74
75
76 double
77 dist2lseg( /* return square of distance to line segment */
78 const FVECT p, /* the point */
79 const FVECT ep1,
80 const FVECT ep2 /* the end points */
81 )
82 {
83 double d, d1, d2;
84
85 d = dist2(ep1, ep2);
86 d1 = dist2(ep1, p);
87 d2 = dist2(ep2, p);
88
89 if (d2 > d1) { /* check if past endpoints */
90 if (d2 - d1 > d)
91 return(d1);
92 } else {
93 if (d1 - d2 > d)
94 return(d2);
95 }
96 d2 = d + d1 - d2;
97
98 return(d1 - 0.25*d2*d2/d); /* distance to line */
99 }
100
101
102 void
103 fcross( /* vres = v1 X v2 */
104 FVECT vres,
105 const FVECT v1,
106 const FVECT v2
107 )
108 {
109 if ((vres == v1) | (vres == v2)) {
110 FVECT vtmp;
111 VCROSS(vtmp, v1, v2);
112 VCOPY(vres, vtmp);
113 return;
114 }
115 VCROSS(vres, v1, v2);
116 }
117
118
119 void
120 fvsum( /* vres = v0 + f*v1 */
121 FVECT vres,
122 const FVECT v0,
123 const FVECT v1,
124 double f
125 )
126 {
127 VSUM(vres, v0, v1, f);
128 }
129
130
131 double
132 normalize( /* normalize a vector, return old magnitude */
133 FVECT v
134 )
135 {
136 double len, d;
137
138 d = DOT(v, v);
139
140 if (d == 0.0)
141 return(0.0);
142
143 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
144 len = 0.5 + 0.5*d; /* first order approximation */
145 d = 2.0 - len;
146 } else {
147 len = sqrt(d);
148 d = 1.0/len;
149 }
150 v[0] *= d;
151 v[1] *= d;
152 v[2] *= d;
153
154 return(len);
155 }
156
157
158 int
159 getperpendicular( /* choose perpedicular direction */
160 FVECT vp, /* returns normalized */
161 const FVECT v, /* input vector must be normalized */
162 int randomize /* randomize orientation */
163 )
164 {
165 int ord[3];
166 FVECT v1;
167 int i;
168
169 if (randomize) { /* randomize coordinates? */
170 v1[0] = 0.5 - frandom();
171 v1[1] = 0.5 - frandom();
172 v1[2] = 0.5 - frandom();
173 switch ((int)(frandom()*6.)) {
174 case 0: ord[0] = 0; ord[1] = 1; ord[2] = 2; break;
175 case 1: ord[0] = 0; ord[1] = 2; ord[2] = 1; break;
176 case 2: ord[0] = 1; ord[1] = 0; ord[2] = 2; break;
177 case 3: ord[0] = 1; ord[1] = 2; ord[2] = 0; break;
178 case 4: ord[0] = 2; ord[1] = 0; ord[2] = 1; break;
179 default: ord[0] = 2; ord[1] = 1; ord[2] = 0; break;
180 }
181 } else {
182 v1[0] = v1[1] = v1[2] = 0.0;
183 ord[0] = 0; ord[1] = 1; ord[2] = 2;
184 }
185
186 for (i = 3; i--; )
187 if ((-0.6 < v[ord[i]]) & (v[ord[i]] < 0.6))
188 break;
189 if (i < 0)
190 return(0);
191
192 v1[ord[i]] = 1.0;
193 fcross(vp, v1, v);
194
195 return(normalize(vp) > 0.0);
196 }
197
198
199 int
200 closestapproach( /* closest approach of two rays */
201 RREAL t[2], /* returned distances along each ray */
202 const FVECT rorg0, /* first origin */
203 const FVECT rdir0, /* first direction (normalized) */
204 const FVECT rorg1, /* second origin */
205 const FVECT rdir1 /* second direction (normalized) */
206 )
207 {
208 double dotprod = DOT(rdir0, rdir1);
209 double denom = 1. - dotprod*dotprod;
210 double o1o2_d1;
211 FVECT o0o1;
212
213 if (denom <= FTINY) { /* check if lines are parallel */
214 t[0] = t[1] = 0.0;
215 return(0);
216 }
217 VSUB(o0o1, rorg0, rorg1);
218 o1o2_d1 = DOT(o0o1, rdir1);
219 t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
220 t[1] = o1o2_d1 + t[0]*dotprod;
221 return(1);
222 }
223
224
225 void
226 spinvector( /* rotate vector around normal */
227 FVECT vres, /* returned vector (same magnitude as vorig) */
228 const FVECT vorig, /* original vector */
229 const FVECT vnorm, /* normalized vector for rotation */
230 double theta /* right-hand radians */
231 )
232 {
233 double sint, cost, normprod;
234 FVECT vperp;
235 int i;
236
237 if (theta == 0.0) {
238 if (vres != vorig)
239 VCOPY(vres, vorig);
240 return;
241 }
242 cost = cos(theta);
243 sint = sin(theta);
244 normprod = DOT(vorig, vnorm)*(1.-cost);
245 VCROSS(vperp, vnorm, vorig);
246 for (i = 0; i < 3; i++)
247 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
248 }
249
250 double
251 geodesic( /* rotate vector on great circle towards target */
252 FVECT vres, /* returned vector (same magnitude as vorig) */
253 const FVECT vorig, /* original vector */
254 const FVECT vtarg, /* vector we are rotating towards */
255 double t, /* amount along arc directed towards vtarg */
256 int meas /* distance measure (radians, absolute, relative) */
257 )
258 {
259 FVECT normtarg;
260 double volen, dotprod, sintr, cost;
261 int i;
262
263 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
264 if (vres != vorig)
265 VCOPY(vres, vorig);
266 if (t == 0.0)
267 return(VLEN(vres)); /* no rotation requested */
268 if ((volen = normalize(vres)) == 0.0)
269 return(0.0);
270 if (normalize(normtarg) == 0.0)
271 return(0.0); /* target vector is zero */
272 dotprod = DOT(vres, normtarg);
273 /* check for colinear */
274 if (dotprod >= 1.0-FTINY*FTINY) {
275 if (meas != GEOD_REL)
276 return(0.0);
277 vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
278 return(volen);
279 }
280 if (dotprod <= -1.0+FTINY*FTINY)
281 return(0.0);
282 if (meas == GEOD_ABS)
283 t /= volen;
284 else if (meas == GEOD_REL)
285 t *= acos(dotprod);
286 cost = cos(t);
287 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
288 for (i = 0; i < 3; i++)
289 vres[i] = volen*( cost*vres[i] +
290 sintr*(normtarg[i] - dotprod*vres[i]) );
291
292 return(volen); /* return vector length */
293 }