ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/fvect.c
Revision: 2.21
Committed: Mon Dec 8 23:51:12 2014 UTC (9 years, 5 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.20: +11 -4 lines
Log Message:
Minor fixes should not affect operation

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: fvect.c,v 2.20 2014/12/04 05:26:27 greg Exp $";
3 #endif
4 /*
5 * fvect.c - routines for floating-point vector calculations
6 */
7
8 #include "copyright.h"
9
10 #define _USE_MATH_DEFINES
11 #include <math.h>
12 #include "fvect.h"
13 #include "random.h"
14
15 double
16 Acos(double x) /* insurance for touchy math library */
17 {
18 if (x <= -1.+FTINY*FTINY)
19 return(M_PI);
20 if (x >= 1.-FTINY*FTINY)
21 return(.0);
22 return(acos(x));
23 }
24
25 double
26 Asin(double x) /* insurance for touchy math library */
27 {
28 if (x <= -1.+FTINY*FTINY)
29 return(-M_PI/2.);
30 if (x >= 1.-FTINY*FTINY)
31 return(M_PI/2);
32 return(asin(x));
33 }
34
35 double
36 fdot( /* return the dot product of two vectors */
37 const FVECT v1,
38 const FVECT v2
39 )
40 {
41 return(DOT(v1,v2));
42 }
43
44
45 double
46 dist2( /* return square of distance between points */
47 const FVECT p1,
48 const FVECT p2
49 )
50 {
51 FVECT delta;
52
53 VSUB(delta, p2, p1);
54
55 return(DOT(delta, delta));
56 }
57
58
59 double
60 dist2line( /* return square of distance to line */
61 const FVECT p, /* the point */
62 const FVECT ep1,
63 const FVECT ep2 /* points on the line */
64 )
65 {
66 double d, d1, d2;
67
68 d = dist2(ep1, ep2);
69 d1 = dist2(ep1, p);
70 d2 = d + d1 - dist2(ep2, p);
71
72 return(d1 - 0.25*d2*d2/d);
73 }
74
75
76 double
77 dist2lseg( /* return square of distance to line segment */
78 const FVECT p, /* the point */
79 const FVECT ep1,
80 const FVECT ep2 /* the end points */
81 )
82 {
83 double d, d1, d2;
84
85 d = dist2(ep1, ep2);
86 d1 = dist2(ep1, p);
87 d2 = dist2(ep2, p);
88
89 if (d2 > d1) { /* check if past endpoints */
90 if (d2 - d1 > d)
91 return(d1);
92 } else {
93 if (d1 - d2 > d)
94 return(d2);
95 }
96 d2 = d + d1 - d2;
97
98 return(d1 - 0.25*d2*d2/d); /* distance to line */
99 }
100
101
102 void
103 fcross( /* vres = v1 X v2 */
104 FVECT vres,
105 const FVECT v1,
106 const FVECT v2
107 )
108 {
109 if ((vres == v1) | (vres == v2)) {
110 FVECT vtmp;
111 VCROSS(vtmp, v1, v2);
112 VCOPY(vres, vtmp);
113 return;
114 }
115 VCROSS(vres, v1, v2);
116 }
117
118
119 void
120 fvsum( /* vres = v0 + f*v1 */
121 FVECT vres,
122 const FVECT v0,
123 const FVECT v1,
124 double f
125 )
126 {
127 VSUM(vres, v0, v1, f);
128 }
129
130
131 double
132 normalize( /* normalize a vector, return old magnitude */
133 FVECT v
134 )
135 {
136 double len, d;
137
138 d = DOT(v, v);
139
140 if (d == 0.0)
141 return(0.0);
142
143 if ((d <= 1.0+FTINY) & (d >= 1.0-FTINY)) {
144 len = 0.5 + 0.5*d; /* first order approximation */
145 d = 2.0 - len;
146 } else {
147 len = sqrt(d);
148 d = 1.0/len;
149 }
150 v[0] *= d;
151 v[1] *= d;
152 v[2] *= d;
153
154 return(len);
155 }
156
157
158 int
159 getperpendicular( /* choose random perpedicular direction */
160 FVECT vp, /* returns normalized */
161 const FVECT v /* input vector must be normalized */
162 )
163 {
164 FVECT v1;
165 int i;
166 /* randomize other coordinates */
167 v1[0] = 0.5 - frandom();
168 v1[1] = 0.5 - frandom();
169 v1[2] = 0.5 - frandom();
170 for (i = 3; i--; )
171 if ((-0.6 < v[i]) & (v[i] < 0.6))
172 break;
173 if (i < 0)
174 return(0);
175 v1[i] = 1.0;
176 fcross(vp, v1, v);
177 return(normalize(vp) > 0.0);
178 }
179
180
181 int
182 closestapproach( /* closest approach of two rays */
183 RREAL t[2], /* returned distances along each ray */
184 const FVECT rorg0, /* first origin */
185 const FVECT rdir0, /* first direction (normalized) */
186 const FVECT rorg1, /* second origin */
187 const FVECT rdir1 /* second direction (normalized) */
188 )
189 {
190 double dotprod = DOT(rdir0, rdir1);
191 double denom = 1. - dotprod*dotprod;
192 double o1o2_d1;
193 FVECT o0o1;
194
195 if (denom <= FTINY) { /* check if lines are parallel */
196 t[0] = t[1] = 0.0;
197 return(0);
198 }
199 VSUB(o0o1, rorg0, rorg1);
200 o1o2_d1 = DOT(o0o1, rdir1);
201 t[0] = (o1o2_d1*dotprod - DOT(o0o1,rdir0)) / denom;
202 t[1] = o1o2_d1 + t[0]*dotprod;
203 return(1);
204 }
205
206
207 void
208 spinvector( /* rotate vector around normal */
209 FVECT vres, /* returned vector (same magnitude as vorig) */
210 const FVECT vorig, /* original vector */
211 const FVECT vnorm, /* normalized vector for rotation */
212 double theta /* right-hand radians */
213 )
214 {
215 double sint, cost, normprod;
216 FVECT vperp;
217 int i;
218
219 if (theta == 0.0) {
220 if (vres != vorig)
221 VCOPY(vres, vorig);
222 return;
223 }
224 cost = cos(theta);
225 sint = sin(theta);
226 normprod = DOT(vorig, vnorm)*(1.-cost);
227 VCROSS(vperp, vnorm, vorig);
228 for (i = 0; i < 3; i++)
229 vres[i] = vorig[i]*cost + vnorm[i]*normprod + vperp[i]*sint;
230 }
231
232 double
233 geodesic( /* rotate vector on great circle towards target */
234 FVECT vres, /* returned vector (same magnitude as vorig) */
235 const FVECT vorig, /* original vector */
236 const FVECT vtarg, /* vector we are rotating towards */
237 double t, /* amount along arc directed towards vtarg */
238 int meas /* distance measure (radians, absolute, relative) */
239 )
240 {
241 FVECT normtarg;
242 double volen, dotprod, sintr, cost;
243 int i;
244
245 VCOPY(normtarg, vtarg); /* in case vtarg==vres */
246 if (vres != vorig)
247 VCOPY(vres, vorig);
248 if (t == 0.0)
249 return(VLEN(vres)); /* no rotation requested */
250 if ((volen = normalize(vres)) == 0.0)
251 return(0.0);
252 if (normalize(normtarg) == 0.0)
253 return(0.0); /* target vector is zero */
254 dotprod = DOT(vres, normtarg);
255 /* check for colinear */
256 if (dotprod >= 1.0-FTINY*FTINY) {
257 if (meas != GEOD_REL)
258 return(0.0);
259 vres[0] *= volen; vres[1] *= volen; vres[2] *= volen;
260 return(volen);
261 }
262 if (dotprod <= -1.0+FTINY*FTINY)
263 return(0.0);
264 if (meas == GEOD_ABS)
265 t /= volen;
266 else if (meas == GEOD_REL)
267 t *= acos(dotprod);
268 cost = cos(t);
269 sintr = sin(t) / sqrt(1. - dotprod*dotprod);
270 for (i = 0; i < 3; i++)
271 vres[i] = volen*( cost*vres[i] +
272 sintr*(normtarg[i] - dotprod*vres[i]) );
273
274 return(volen); /* return vector length */
275 }